Previous |  Up |  Next

Article

Title: A half-space type property in the Euclidean sphere (English)
Author: Velásquez, Marco Antonio Lázaro
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 1
Year: 2022
Pages: 49-63
Summary lang: English
.
Category: math
.
Summary: We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb{S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb{S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb{S}^{n+1}$. We also provide a rigidity result for such hypersurfaces. (English)
Keyword: Euclidean sphere
Keyword: closed hypersurfaces
Keyword: $(r+1)$-th mean curvature
Keyword: strong $r$-stability
Keyword: geodesic spheres
Keyword: upper (lower) domain enclosed by a geodesic sphere
MSC: 53C21
MSC: 53C42
idZBL: Zbl 07511507
idMR: MR4412967
DOI: 10.5817/AM2022-1-49
.
Date available: 2022-02-23T12:12:27Z
Last updated: 2022-06-23
Stable URL: http://hdl.handle.net/10338.dmlcz/149446
.
Reference: [1] Alencar, H., do Carmo, M., Colares, A.G.: Stable hypersurfaces with constant scalar curvature.Math. Z. 213 (1993), 117–131. Zbl 0792.53057, 10.1007/BF03025712
Reference: [2] Alías, L.J., Barros, A., Brasil Jr., A.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue.Proc. Amer. Math. Soc. 133 (2005), 875–884. MR 2113939, 10.1090/S0002-9939-04-07559-8
Reference: [3] Alías, L.J., Brasil Jr., A., Perdomo, O.: On the stability index of hypersurfaceswith constant mean curvature in spheres.Proc. Amer. Math. Soc. 135 (2007), 3685–3693. MR 2336585, 10.1090/S0002-9939-07-08886-7
Reference: [4] Alías, L.J., Brasil Jr., A., Sousa Jr., L.: A characterization of Clifford tori with constant scalar curvatrue one by the first stability eigenvalue.Bull. Braz. Math. Soc. 35 (2004), 165–175. MR 2081021, 10.1007/s00574-004-0009-8
Reference: [5] Aquino, C.P., de Lima, H.: On the rigidity of constant mean curvature complete vertical graphs in warped products.Differential Geom. Appl. 29 (2011), 590–596. MR 2811668, 10.1016/j.difgeo.2011.04.039
Reference: [6] Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces.Quaest. Math. 40 (2017), 605–616. MR 3691472, 10.2989/16073606.2017.1305463
Reference: [7] Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant $r$-mean curvature.Ann. Global Anal. Geom. 15 (1997), 277–297. Zbl 0891.53044, 10.1023/A:1006514303828
Reference: [8] Barbosa, J.L.M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature.Math. Z. 185 (1984), 339–353. Zbl 0513.53002, 10.1007/BF01215045
Reference: [9] Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds.Math. Z. 197 (1988), 1123–138.
Reference: [10] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature.Proc. Amer. Math. Soc. 137 (2009), 3105–3114. Zbl 1189.53058, MR 2506469, 10.1090/S0002-9939-09-09862-1
Reference: [11] Chavel, I.: Eigenvalues in Riemannian Geometry.Academic Press, Inc., 1984.
Reference: [12] Cheng, Q.: First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature.Proc. Amer. Math. Soc. 136 (2008), 3309–3318. MR 2407097, 10.1090/S0002-9939-08-09304-0
Reference: [13] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, 10.1007/BF01425237
Reference: [14] de Lima, H.F., Velásquez, Marco A.L.: A new characterization of $r$-stable hypersurfaces in space forms.Arch. Math. (Brno) 47 (2011), 119–131. MR 2813538
Reference: [15] Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds.Indiana Univ. Math. J. 48 (1999), 711–748. 10.1512/iumj.1999.48.1562
Reference: [16] Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differential Geom. 8 (1973), 465–477. Zbl 0277.53030, 10.4310/jdg/1214431802
.

Files

Files Size Format View
ArchMathRetro_058-2022-1_4.pdf 520.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo