| Title: | On the conjugate type vector and the structure of a normal subgroup (English) | 
| Author: | Chen, Ruifang | 
| Author: | Guo, Lujun | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 72 | 
| Issue: | 1 | 
| Year: | 2022 | 
| Pages: | 201-207 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$. (English) | 
| Keyword: | index | 
| Keyword: | conjugacy class size | 
| Keyword: | Baer group | 
| MSC: | 20D60 | 
| MSC: | 20E45 | 
| idZBL: | Zbl 07511562 | 
| idMR: | MR4389115 | 
| DOI: | 10.21136/CMJ.2021.0395-20 | 
| . | 
| Date available: | 2022-03-25T08:30:21Z | 
| Last updated: | 2024-04-01 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/149582 | 
| . | 
| Reference: | [1] Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M.: Normal subgroups and $p$-regular $G$-class sizes.J. Algebra 336 (2011), 236-241. Zbl 1241.20034, MR 2802540, 10.1016/j.jalgebra.2011.04.004 | 
| Reference: | [2] Baer, R.: Group elements of prime power index.Trans. Am. Math. Soc. 75 (1953), 20-47. Zbl 0051.25702, MR 55340, 10.1090/S0002-9947-1953-0055340-0 | 
| Reference: | [3] Beltrán, A., Felipe, M. J.: Finite groups with a disconnected $p$-regular conjugacy class graph.Commun. Algebra 32 (2004), 3503-3516. Zbl 1081.20040, MR 2097475, 10.1081/AGB-120039627 | 
| Reference: | [4] Bertram, E. A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups.Bull. London Math. Soc. 22 (1990), 569-575. Zbl 0743.20017, MR 1099007, 10.1112/blms/22.6.569 | 
| Reference: | [5] Camina, A. R.: Arithmetical conditions on the conjugacy class numbers of a finite group.J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. Zbl 0242.20025, MR 0294481, 10.1112/jlms/s2-5.1.127 | 
| Reference: | [6] Camina, A. R.: Finite groups of conjugate rank 2.Nagoya Math. J. 53 (1974), 47-57. Zbl 0255.20014, MR 346054, 10.1017/S0027763000016019 | 
| Reference: | [7] Camina, A. R., Camina, R. D.: Implications of conjugacy class size.J. Group Theory 1 (1998), 257-269. Zbl 0916.20015, MR 1633180, 10.1515/jgth.1998.017 | 
| Reference: | [8] Camina, A. R., Camina, R. D.: Recognizing direct products from their conjugate type vectors.J. Algebra 234 (2000), 604-608. Zbl 0968.20017, MR 1800744, 10.1006/jabr.2000.8535 | 
| Reference: | [9] Itô, N.: On finite groups with given conjugate types. I.Nagoya Math. J. 6 (1953), 17-28. Zbl 0053.01202, MR 61597, 10.1017/S0027763000016937 | 
| Reference: | [10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction.Universitext. Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433 | 
| Reference: | [11] Zhao, X., Guo, X.: On the normal subgroup with exactly two $G$-conjugacy class sizes.Chin. Ann. Math., Ser. B 30 (2009), 427-432. Zbl 1213.20031, MR 2529448, 10.1007/s11401-008-0088-8 | 
| . |