Previous |  Up |  Next

Article

Title: Generalized quadratic operators and perturbations (English)
Author: Souilah, Khalid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 1
Year: 2022
Pages: 51-63
Summary lang: English
.
Category: math
.
Summary: We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator. (English)
Keyword: generalized quadratic operator
Keyword: perturbation classes problem
MSC: 47A55
MSC: 47B01
MSC: 47B99
idZBL: Zbl 07547241
idMR: MR4387468
DOI: 10.21136/MB.2021.0010-20
.
Date available: 2022-04-17T18:08:52Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149594
.
Reference: [1] Aiena, P., González, M.: Intrinsic characterizations of perturbation classes on some Banach spaces.Arch. Math. 94 (2010), 373-381. Zbl 1187.47014, MR 2643971, 10.1007/s00013-010-0103-7
Reference: [2] Aleksiejczyk, M., Smoktunowicz, A.: On properties of quadratic matrices.Math. Pannonica 11 (2000), 239-248. Zbl 0994.15012, MR 1791000
Reference: [3] Deng, C. Y.: On properties of generalized quadratic operators.Linear Algebra Appl. 432 (2010), 847-856. Zbl 1185.47001, MR 2577632, 10.1016/j.laa.2009.09.024
Reference: [4] Farebrother, R. W., Trenkler, G.: On generalized quadratic matrices.Linear Algebra Appl. 410 (2005), 244-253. Zbl 1086.15504, MR 2177842, 10.1016/j.laa.2005.08.018
Reference: [5] González, M.: The perturbation classes problem in Fredholm theory.J. Funct. Anal. 200 (2003), 65-70. Zbl 1036.47007, MR 1974088, 10.1016/S0022-1236(02)00071-X
Reference: [6] González, M., Martínez-Abejón, A., Pello, J.: A survey on the perturbation classes problem for semi-Fredholm and Fredholm operators.Funct. Anal. Approx. Comput. 7 (2015), 75-87. Zbl 1353.47019, MR 3313269
Reference: [7] Lebow, A., Schechter, M.: Semigroups of operators and measures of noncompactness.J. Funct. Anal. 7 (1971), 1-26. Zbl 0209.45002, MR 0273422, 10.1016/0022-1236(71)90041-3
Reference: [8] Oudghiri, M., Souilah, K.: Linear preservers of quadratic operators.Mediterr. J. Math. 13 (2016), 4929-4938. Zbl 1362.47027, MR 3564542, 10.1007/s00009-016-0783-8
Reference: [9] Oudghiri, M., Souilah, K.: The perturbation class of algebraic operators and applications.Ann. Funct. Anal. 9 (2018), 426-434. Zbl 06946366, MR 3835229, 10.1215/20088752-2017-0057
Reference: [10] Petik, T., Uç, M., Özdemir, H.: Generalized quadraticity of linear combination of two generalized quadratic matrices.Linear Multilinear Algebra 63 (2015), 2430-2439. Zbl 1330.15048, MR 3402548, 10.1080/03081087.2015.1016886
Reference: [11] Uç, M., Özdemir, H., Özban, A. Y.: On the quadraticity of linear combinations of quadratic matrices.Linear Multilinear Algebra 63 (2015), 1125-1137. Zbl 1310.15049, MR 3291960, 10.1080/03081087.2014.922967
Reference: [12] Uç, M., Petik, T., Özdemir, H.: The generalized quadraticity of linear combinations of two commuting quadratic matrices.Linear Multilinear Algebra 64 (2016), 1696-1715. Zbl 1346.15017, MR 3509494, 10.1080/03081087.2015.1114985
Reference: [13] Živković-Zlatanović, S. Č., Djordjević, D. S., Harte, R.: Ruston, Riesz and perturbation classes.J. Math. Anal. Appl. 389 (2012), 871-886. Zbl 1253.47029, MR 2879265, 10.1016/j.jmaa.2011.12.030
.

Files

Files Size Format View
MathBohem_147-2022-1_5.pdf 222.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo