Title:
|
Generalized quadratic operators and perturbations (English) |
Author:
|
Souilah, Khalid |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
51-63 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator. (English) |
Keyword:
|
generalized quadratic operator |
Keyword:
|
perturbation classes problem |
MSC:
|
47A55 |
MSC:
|
47B01 |
MSC:
|
47B99 |
idZBL:
|
Zbl 07547241 |
idMR:
|
MR4387468 |
DOI:
|
10.21136/MB.2021.0010-20 |
. |
Date available:
|
2022-04-17T18:08:52Z |
Last updated:
|
2022-09-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149594 |
. |
Reference:
|
[1] Aiena, P., González, M.: Intrinsic characterizations of perturbation classes on some Banach spaces.Arch. Math. 94 (2010), 373-381. Zbl 1187.47014, MR 2643971, 10.1007/s00013-010-0103-7 |
Reference:
|
[2] Aleksiejczyk, M., Smoktunowicz, A.: On properties of quadratic matrices.Math. Pannonica 11 (2000), 239-248. Zbl 0994.15012, MR 1791000 |
Reference:
|
[3] Deng, C. Y.: On properties of generalized quadratic operators.Linear Algebra Appl. 432 (2010), 847-856. Zbl 1185.47001, MR 2577632, 10.1016/j.laa.2009.09.024 |
Reference:
|
[4] Farebrother, R. W., Trenkler, G.: On generalized quadratic matrices.Linear Algebra Appl. 410 (2005), 244-253. Zbl 1086.15504, MR 2177842, 10.1016/j.laa.2005.08.018 |
Reference:
|
[5] González, M.: The perturbation classes problem in Fredholm theory.J. Funct. Anal. 200 (2003), 65-70. Zbl 1036.47007, MR 1974088, 10.1016/S0022-1236(02)00071-X |
Reference:
|
[6] González, M., Martínez-Abejón, A., Pello, J.: A survey on the perturbation classes problem for semi-Fredholm and Fredholm operators.Funct. Anal. Approx. Comput. 7 (2015), 75-87. Zbl 1353.47019, MR 3313269 |
Reference:
|
[7] Lebow, A., Schechter, M.: Semigroups of operators and measures of noncompactness.J. Funct. Anal. 7 (1971), 1-26. Zbl 0209.45002, MR 0273422, 10.1016/0022-1236(71)90041-3 |
Reference:
|
[8] Oudghiri, M., Souilah, K.: Linear preservers of quadratic operators.Mediterr. J. Math. 13 (2016), 4929-4938. Zbl 1362.47027, MR 3564542, 10.1007/s00009-016-0783-8 |
Reference:
|
[9] Oudghiri, M., Souilah, K.: The perturbation class of algebraic operators and applications.Ann. Funct. Anal. 9 (2018), 426-434. Zbl 06946366, MR 3835229, 10.1215/20088752-2017-0057 |
Reference:
|
[10] Petik, T., Uç, M., Özdemir, H.: Generalized quadraticity of linear combination of two generalized quadratic matrices.Linear Multilinear Algebra 63 (2015), 2430-2439. Zbl 1330.15048, MR 3402548, 10.1080/03081087.2015.1016886 |
Reference:
|
[11] Uç, M., Özdemir, H., Özban, A. Y.: On the quadraticity of linear combinations of quadratic matrices.Linear Multilinear Algebra 63 (2015), 1125-1137. Zbl 1310.15049, MR 3291960, 10.1080/03081087.2014.922967 |
Reference:
|
[12] Uç, M., Petik, T., Özdemir, H.: The generalized quadraticity of linear combinations of two commuting quadratic matrices.Linear Multilinear Algebra 64 (2016), 1696-1715. Zbl 1346.15017, MR 3509494, 10.1080/03081087.2015.1114985 |
Reference:
|
[13] Živković-Zlatanović, S. Č., Djordjević, D. S., Harte, R.: Ruston, Riesz and perturbation classes.J. Math. Anal. Appl. 389 (2012), 871-886. Zbl 1253.47029, MR 2879265, 10.1016/j.jmaa.2011.12.030 |
. |