Previous |  Up |  Next

Article

Title: On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials (English)
Author: Le, Cong Nhan
Author: Le, Xuan Truong
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 1
Year: 2022
Pages: 33-49
Summary lang: English
.
Category: math
.
Summary: We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution. (English)
Keyword: Nehari manifold
Keyword: fibrering maps
Keyword: vanishing potential
Keyword: logarithmic nonlinearity
MSC: 35J60
MSC: 47J30
idZBL: Zbl 07547240
idMR: MR4387467
DOI: 10.21136/MB.2021.0143-19
.
Date available: 2022-04-17T18:08:22Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149588
.
Reference: [1] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of elliptic equations in $\mathbb R^N$ with vanishing potentials.J. Differ. Equations 252 (2012), 5555-5568 \99999DOI99999 10.1016/j.jde.2012.01.025 . Zbl 1250.35103, MR 2902126, 10.1016/j.jde.2012.01.025
Reference: [2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity.J. Differ. Equations 254 (2013), 1977-1991 \99999DOI99999 10.1016/j.jde.2012.11.013 . Zbl 1263.35076, MR 3003299
Reference: [3] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems.Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). Zbl 1125.47052, MR 2292344, 10.1017/CBO9780511618260
Reference: [4] Ambrosetti, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials.Differ. Integral Equ. 18 (2005), 1321-1332 \99999MR99999 2174974 . Zbl 1210.35087, MR 2174974
Reference: [5] Ardila, A. H.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity.Nonlinear Anal., Theory Methods Appl. 155 (2017), 52-64 \99999DOI99999 10.1016/j.na.2017.01.006 . Zbl 1368.35242, MR 3631741
Reference: [6] Benci, V., Grisanti, C. R., Micheletti, A. M.: Existence of solutions for the nonlinear Schrödinger equation with $V(\infty)=0$.Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and Their Applications 66. Birkhäuser, Basel (2006), 53-65 \99999DOI99999 10.1007/3-7643-7401-2_4 . Zbl 1231.35225, MR 2187794
Reference: [7] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I: Existence of a ground state.Arch. Ration. Mech. Anal. 82 (1983), 313-345 \99999DOI99999 10.1007/BF00250555 . Zbl 0533.35029, MR 0695535
Reference: [8] Bia{ł}ynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics.Ann. Phys. 100 (1976), 62-93 \99999DOI99999 10.1016/0003-4916(76)90057-9 . MR 0426670
Reference: [9] Brown, K. J., Zhang, Y.: The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function.J. Differ. Equations 193 (2003), 481-499 \99999DOI99999 10.1016/S0022-0396(03)00121-9 . Zbl 1074.35032, MR 1998965
Reference: [10] Caffarelli, L.: Non-local diffusions, drifts and games.Nonlinear Partial Differential Equations: The Abel symposium 2010 Abel Symposia 7. Springer, Berlin (2012), 37-52 \99999DOI99999 10.1007/978-3-642-25361-4_3 . Zbl 1266.35060, MR 3289358
Reference: [11] Campa, I., Degiovanni, M.: Subdifferential calculus and nonsmooth critical point theory.SIAM J. Optim. 10 (2000), 1020-1048 \99999DOI99999 10.1137/S1052623499353169 . Zbl 1042.49018, MR 1777078
Reference: [12] Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation.Nonlinear Anal., Theory Methods Appl. 7 (1983), 1127-1140. Zbl 0529.35068, MR 0719365, 10.1016/0362-546X(83)90022-6
Reference: [13] Cazenave, T., Haraux, A.: Équations d'évolution avec non linéarité logarithmique.Ann. Fac. Sci. Toulouse, Math. (5) 2 (1980), 21-51 French \99999DOI99999 10.5802/afst.543 . Zbl 0411.35051, MR 0583902
Reference: [14] Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations.J. Math. Phys. 54 (2013), Article ID 061504, 10 pages \99999DOI99999 10.1063/1.4809933 . Zbl 1282.81072, MR 3112523
Reference: [15] Chen, W., Deng, S.: The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities.Z. Angew. Math. Phys. 66 (2015), 1387-1400. Zbl 1321.35253, MR 3377693, 10.1007/s00033-014-0486-6
Reference: [16] Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential.J. Math. Phys. 53 (2012), Article ID 043507, 7 pages \99999DOI99999 10.1063/1.3701574 . Zbl 1275.81030, MR 2953151
Reference: [17] Corvellec, J.-N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals and critical point theory.Topol. Methods Nonlinear Anal. 1 (1993), 151-171 \99999DOI99999 10.12775/TMNA.1993.012 . Zbl 0789.58021, MR 1215263
Reference: [18] D'Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation.Commun. Contemp. Math. 16 (2014), Article ID 1350032, 15 pages \99999DOI99999 10.1142/S0219199713500326 . Zbl 1292.35259, MR 3195154
Reference: [19] Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions.Math. Comput. Modelling 32 (2000), 1377-1393. Zbl 0970.35038, MR 1800662, 10.1016/S0895-7177(00)00211-9
Reference: [20] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces.Bull. Sci. Math. 136 (2012), 521-573 \99999DOI99999 10.1016/j.bulsci.2011.12.004 . Zbl 1252.46023, MR 2944369
Reference: [21] Drábek, P., Pohozaev, S. I.: Positive solutions for the $p$-Laplacian: Application of the fibrering method.Proc. R. Soc. Edinb., Sect. A 127 (1997), 703-726 \99999DOI99999 10.1017/S0308210500023787 . Zbl 0880.35045, MR 1465416
Reference: [22] Furtado, M. F., Maia, L. A., Medeiros, E. S.: Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential.Adv. Nonlinear Stud. 8 (2008), 353-373 \99999DOI99999 10.1515/ans-2008-0207 . Zbl 1168.35433, MR 2402826
Reference: [23] Hefter, E. F.: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics.Phys. Rev. 32(A) (1985), 1201-1204 \99999DOI99999 10.1103/PhysRevA.32.1201 .
Reference: [24] Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential.J. Math. Anal. Appl. 437 (2016), 241-254. Zbl 1333.35010, MR 3451965, 10.1016/j.jmaa.2015.11.071
Reference: [25] Khoutir, S., Chen, H.: Existence of infinitely many high energy solutions for a fractional Schrödinger equation in $\mathbb R^N$.Appl. Math. Lett. 61 (2016), 156-162 \99999DOI99999 10.1016/j.aml.2016.06.001 . Zbl 1386.35444, MR 3518463
Reference: [26] Laskin, N.: Fractional quantum mechanics and Lévy path integrals.Phys. Lett., A 268 (2000), 298-305 \99999DOI99999 10.1016/S0375-9601(00)00201-2 . Zbl 0948.81595, MR 1755089
Reference: [27] Laskin, N.: Fractional Schrödinger equation.Phys. Rev. E (3) 66 (2002), Article ID 056108, 7 pages \99999DOI99999 10.1103/PhysRevE.66.056108 . MR 1948569
Reference: [28] Perera, K., Squassina, M., Yang, Y.: Critical fractional $p$-Laplacian problems with possibly vanishing potentials.J. Math. Anal. Appl. 433 (2016), 818-831 \99999DOI99999 10.1016/j.jmaa.2015.08.024 . Zbl 1403.35319, MR 3398738
Reference: [29] Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb R^N$.J. Math. Phys. 54 (2013), Article ID 031501, 17 pages \99999DOI99999 10.1063/1.4793990 . Zbl 1281.81034, MR 3059423
Reference: [30] Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth.Nonlinearity 27 (2014), 187-207 \99999DOI99999 10.1088/0951-7715/27/2/187 . Zbl 1287.35027, MR 3153832
Reference: [31] Shang, X., Zhang, J., Yang, Y.: On fractional Schrödinger equation in $\mathbb R^N$ with critical growth.J. Math. Phys. 54 (2013), Article ID 121502, 20 pages. Zbl 1290.35251, MR 3156081, 10.1063/1.4835355
Reference: [32] Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential.Calc. Var. Partial Differ. Equ. 54 (2015), 585-597. Zbl 1326.35358, MR 3385171, 10.1007/s00526-014-0796-8
Reference: [33] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109 \99999DOI99999 10.1016/S0294-1449(16)30389-4 . Zbl 0612.58011, MR 0837231
Reference: [34] Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in $\mathbb R^N$.Nonlinear Anal., Real World Appl. 21 (2015), 76-86 \99999DOI99999 10.1016/j.nonrwa.2014.06.008 . Zbl 1302.35415, MR 3261580
Reference: [35] Ledesma, C. E. Torres: Existence and symmetry result for fractional $p$-Laplacian in $\Bbb{R}^n$.Commun. Pure Appl. Anal. (2017), 16 99-113. Zbl 1364.35426, MR 3583517, 10.3934/cpaa.2017004
Reference: [36] Zloshchastiev, K. G.: Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences.Grav. Cosmol. 16 (2010), 288-297. Zbl 1232.83044, MR 2740900, 10.1134/S0202289310040067
.

Files

Files Size Format View
MathBohem_147-2022-1_4.pdf 279.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo