Previous |  Up |  Next

Article

Title: A convex treatment of numerical radius inequalities (English)
Author: Heydarbeygi, Zahra
Author: Sababheh, Mohammad
Author: Moradi, Hamid
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 2
Year: 2022
Pages: 601-614
Summary lang: English
.
Category: math
.
Summary: We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such versions. (English)
Keyword: numerical radius
Keyword: operator norm
Keyword: mixed Schwarz inequality
MSC: 15A60
MSC: 47A12
MSC: 47A30
idZBL: Zbl 07547222
idMR: MR4412777
DOI: 10.21136/CMJ.2022.0068-21
.
Date available: 2022-04-21T19:06:35Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150419
.
Reference: [1] Abu-Omar, A., Kittaneh, F.: A generalization of the numerical radius.Linear Algebra Appl. 569 (2019), 323-334. Zbl 07060516, MR 3907855, 10.1016/j.laa.2019.01.019
Reference: [2] Aujla, J. S., Silva, F. C.: Weak majorization inequalities and convex functions.Linear Algebra Appl. 369 (2003), 217-233. Zbl 1031.47007, MR 1988488, 10.1016/S0024-3795(02)00720-6
Reference: [3] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint numerical ranges of operators in semi- Hilbertian spaces.Linear Algebra Appl. 555 (2018), 266-284. Zbl 06914727, MR 3834203, 10.1016/j.laa.2018.06.021
Reference: [4] Bhunia, P., Bhanja, A., Bag, S., Paul, K.: Bounds for the Davis-Wielandt radius of bounded linear operators.Ann. Funct. Anal. 12 (2021), Article ID 18, 23 pages. Zbl 07296618, MR 4181696, 10.1007/s43034-020-00102-9
Reference: [5] Bhunia, P., Paul, K., Nayak, R. K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices.Math. Inequal. Appl. 24 (2021), 167-183. Zbl 07354296, MR 4221344, 10.7153/mia-2021-24-12
Reference: [6] Buzano, M. L.: Generalizzazione della diseguaglianza di Cauchy-Schwarz.Rend. Semin. Mat., Torino Italian 31 (1974), 405-409. Zbl 0285.46016, MR 0344857
Reference: [7] Dragomir, S. S.: Some refinements of Schwartz inequality.Proceedings of the Symposium of Mathematics and Its Applications Timişoara Research Centre of the Romanian Academy, Timişoara (1986), 13-16. Zbl 0594.46018
Reference: [8] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces.Sarajevo J. Math. 5 (2009), 269-278. Zbl 1225.47008, MR 2567758
Reference: [9] Dragomir, S. S.: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces.SpringerBriefs in Mathematics. Springer, Cham (2013). Zbl 1302.47001, MR 3112193, 10.1007/978-3-319-01448-7
Reference: [10] El-Haddad, M., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. II.Stud. Math. 182 (2007), 133-140. Zbl 1130.47003, MR 2338481, 10.4064/sm182-2-3
Reference: [11] Halmos, P. R.: A Hilbert Space Problem Book.Graduate Texts in Mathematics 19. Springer, New York (1982). Zbl 0496.47001, MR 0675952, 10.1007/978-1-4684-9330-6
Reference: [12] Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix.Stud. Math. 158 (2003), 11-17. Zbl 1113.15302, MR 2014548, 10.4064/sm158-1-2
Reference: [13] Kittaneh, F.: Norm inequalities for sums and differences of positive operators.Linear Algebra Appl. 383 (2004), 85-91. Zbl 1063.47005, MR 2073894, 10.1016/j.laa.2003.11.023
Reference: [14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators.Stud. Math. 168 (2005), 73-80. Zbl 1072.47004, MR 2133388, 10.4064/sm168-1-5
Reference: [15] Moradi, H. R., Sababheh, M.: More accurate numerical radius inequalities. II.Linear Multilinear Algebra 69 (2021), 921-933. Zbl 07333202, MR 4230456, 10.1080/03081087.2019.1703886
Reference: [16] Omidvar, M. E., Moradi, H. R., Shebrawi, K.: Sharpening some classical numerical radius inequalities.Oper. Matrices 12 (2018), 407-416. Zbl 06905101, MR 3812182, 10.7153/oam-2018-12-26
Reference: [17] Pečarić, J., Furuta, T., Hot, J. Mićić, Seo, Y.: Mond-Pečarić Method in Operator Inequalities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space.Monographs in Inequalities 1. Element, Zagreb (2005). Zbl 1135.47012, MR 3026316
Reference: [18] Sababheh, M.: Numerical radius inequalities via convexity.Linear Algebra Appl. 549 (2018), 67-78. Zbl 06866366, MR 3784336, 10.1016/j.laa.2018.03.025
Reference: [19] Sababheh, M.: Heinz-type numerical radii inequalities.Linear Multilinear Algebra 67 (2019), 953-964. Zbl 07048433, MR 3923038, 10.1080/03081087.2018.1440518
Reference: [20] Sababheh, M., Moradi, H. R.: More accurate numerical radius inequalities. I.Linear Multilinear Algebra 69 (2021), 1964-1973. Zbl 07394476, MR 4279169, 10.1080/03081087.2019.1651815
Reference: [21] Zamani, A.: $A$-numerical radius inequalities for semi-Hilbertian space operators.Linear Algebra Appl. 578 (2019), 159-183. Zbl 07099557, MR 3953041, 10.1016/j.laa.2019.05.012
Reference: [22] Zamani, A., Moslehian, M. S., Xu, Q., Fu, C.: Numerical radius inequalities concerning with algebra norms.Mediterr. J. Math. 18 (2021), Article ID 38, 13 pages. Zbl 07302838, MR 4203694, 10.1007/s00009-020-01665-6
.

Files

Files Size Format View
CzechMathJ_72-2022-2_17.pdf 231.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo