Previous |  Up |  Next

Article

Title: Properties of solutions of quaternionic Riccati equations (English)
Author: Grigorian, Gevorg Avagovich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 2
Year: 2022
Pages: 115-132
Summary lang: English
.
Category: math
.
Summary: In this paper we study properties of regular solutions of quaternionic Riccati equations. The obtained results we use for study of the asymptotic behavior of solutions of two first-order linear quaternionic ordinary differential equations. (English)
Keyword: quaternions
Keyword: the matrix representation of quaternions
Keyword: quaternionic Riccati equations
Keyword: regular
Keyword: normal and extremal solutions of Riccati equations
Keyword: normal
Keyword: irreconci-lable
Keyword: sub extremal and super extremal systems
Keyword: principal and non principal solutions
MSC: 34C99
MSC: 34L30
idZBL: Zbl 07547205
idMR: MR4448487
DOI: 10.5817/AM2022-2-115
.
Date available: 2022-05-16T10:33:38Z
Last updated: 2022-08-11
Stable URL: http://hdl.handle.net/10338.dmlcz/150425
.
Reference: [1] Campos, J., Mavhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations.Ann. Math. 185 (2006), 109–127. MR 2187757
Reference: [2] Christianto, V., Smarandache, F.: An exact mapping from Navier-Stocks equation to Schrodinger equation via Riccati equation.Progr. Phys. 1 (2008), 38–39. MR 2365963
Reference: [3] Egorov, A.I.: Riccati equations.Moskow, Fizmatlit, 2001.
Reference: [4] Gibbon, J.D., Holm, D.D., Kerr, R.M., Roulstone, I.: Quaternions and periodic dynamics in the Euler fluid equations.Nonlinearity 19 (2006), 1962–1983. MR 2250802, 10.1088/0951-7715/19/8/011
Reference: [5] Grigorian, G. A.: Some properties of the solutions of third order linear ordinary differential equations.Rocky Mountain J. Math. 46 (1) (2016), 147–161. MR 3506083, 10.1216/RMJ-2016-46-1-147
Reference: [6] Grigorian, G.A.: On some properties of solutions of the Riccati equation.Izv. Nats. Akad. Nauk Armenii Mat. 42 (4) (2007), 11–26, translation in J. Contemp. Math. Anal. 42 (2007), no. 4, 184–197. MR 2413677
Reference: [7] Grigorian, G.A.: On the stability of systems of two first-order linear ordinary differential equations.Differ. Uravn. 51 (3) (2015), 283–292. MR 3373201
Reference: [8] Grigorian, G.A.: Necessary conditions and a test for the stability of a system of two linear ordinary differential equations of the first order.Differ. Uravn. 52 (3) (2016), 292–300. MR 3540205
Reference: [9] Grigorian, G.A.: On one oscillatory criterion for the second order linear ordinary differential equations.Opuscula Math. 36 (5) (2016), 589–601, http://dx.doi.org/10.7494/OpMath.2016.36.5.589. MR 3520801, 10.7494/OpMath.2016.36.5.589
Reference: [10] Grigorian, G.A.: Oscillatory criteria for the second order linear ordinary differential equations.Math. Slovaca 69 (2019), 1–14. MR 3985023, 10.1515/ms-2017-0274
Reference: [11] Grigorian, G.A.: Global solvability criteria for quaternionic Riccati equations.Arch. Math. (Brno) 57 (2021), 83–99. MR 4306170, 10.5817/AM2021-2-83
Reference: [12] Leschke, K., Moriya, K.: Applications of quaternionic holomorphic geometry to minimal surfaces.Complex manifolds 3 (1) (2016), 282–300. MR 3635782, 10.1515/coma-2016-0015
Reference: [13] Wilzinski, P.: Quaternionic-valued differential equations. The Riccati equations.J. Differential Equations 247 (2009), 2167–2187. MR 2560053
Reference: [14] Zoladek, H.: Classification of diffeomorphisms of $\mathbb{S}^4$ induced by quaternionic Riccati equations with periodic coefficients.Topol. Methods Nonlinear Anal. 33 (2) (2009), 205–215. MR 2547774, 10.12775/TMNA.2009.014
.

Files

Files Size Format View
ArchMathRetro_058-2022-2_4.pdf 528.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo