Previous |  Up |  Next

Article

Title: Initial coefficients for generalized subclasses of bi-univalent functions defined with subordination (English)
Author: Singh, Gagandeep
Author: Singh, Gurcharanjit
Author: Singh, Gurmeet
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 2
Year: 2022
Pages: 105-113
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with certain generalized subclasses of bi-univalent functions defined with subordination in the open unit disc $E=\left\rbrace z:\mid z \mid <1\right\lbrace $. The bounds for the initial coefficients for the functions in these classes are studied. The earlier known results follow as special cases. (English)
Keyword: coefficient estimates
Keyword: analytic functions
Keyword: univalent functions
Keyword: bi-univalent functions
Keyword: generalized Sãlãgean operator
Keyword: subordination
MSC: 30C45
MSC: 30C50
idZBL: Zbl 07547204
idMR: MR4448486
DOI: 10.5817/AM2022-2-105
.
Date available: 2022-05-16T10:32:10Z
Last updated: 2022-08-11
Stable URL: http://hdl.handle.net/10338.dmlcz/150424
.
Reference: [1] Abirami, C., Magesh, N., Gati, N.B., Yamini, J.: Horadam polynomial coefficient estimates for a class of $\lambda $-bi-pseudo-starlike functions.J. Anal. 2020 (2020), 1–10, https://doi.org/10.1007/s41478-020-00224-2. MR 4181908, 10.1007/s41478-020-00224-2
Reference: [2] Al-Oboudi, F.M.: On univalent functions defined by a generalized Sãlãgean operator.Int. J. Math. Math. Sci. 27 (2004), 1429–1436. MR 2085011, 10.1155/S0161171204108090
Reference: [3] Aouf, M.K.: On a class of $p$-valent starlike functions of order $\alpha $.Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. MR 0907789, 10.1155/S0161171287000838
Reference: [4] Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions.Mathematical Analysis and its Applications, Kuwait, February 18–21, 1985 (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53–60, 1985, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2), 70–77. MR 0951657
Reference: [5] Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions.Appl. Math. Lett. 24 (2011), 1569–1573. MR 2803711, 10.1016/j.aml.2011.03.048
Reference: [6] Joshi, S., Altinkya, S., Yalcin, S.: Coefficient estimates for Sãlãgean type $\lambda $-bi-pseudo-starlike functions.Kyungpook Math. J. 57 (2017), 613–621. MR 3745142
Reference: [7] Joshi, S., Pawar, H.: On some subclasses of bi-univalent functions associated with pseudo-starlike functions.J. Egyptian Math. Soc. 24 (2016), 522–525. MR 3553869, 10.1016/j.joems.2016.03.007
Reference: [8] Juma, A.R S., Aziz, F.S.: Applying Ruscheweyh derivative on two subclasses of bi-univalent functions.Int. J. Basic Appl. Sci. 12 (6) (2012), 68–74.
Reference: [9] Lewin, M.: On a coefficient problem for bi-univalent functions.Proc. Amer. Math. Soc. 18 (1967), 63–68. MR 0206255, 10.1090/S0002-9939-1967-0206255-1
Reference: [10] Magesh, N., Bulut, S.: Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions.Afrika Mat. 29 (2018), 203–209. MR 3761423, 10.1007/s13370-017-0535-3
Reference: [11] Magesh, N., Rosy, T., Varma, S.: Coefficient estimate problem for a new subclass of bi-univalent functions.J. Complex Anal. 2013 (2013), 3 pp., Article ID 474231. MR 3124622
Reference: [12] Mazi, E.P., Opoola, T.O.: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions.Gen. Math. 25 (2017), 85–95.
Reference: [13] Sãlãgean, G.S.: Subclasses of univalent functions.Complex Analysis-Fifth Romanian Finish Seminar, Bucharest 1 (1983), 362–372. MR 0738107, 10.1007/BFb0066543
Reference: [14] Singh, Gagandeep: Coefficient estimates for bi-univalent functions with respect to symmetric points.J. Nonlinear Func. Anal. 1 (2013), 1–9, Article ID 2013.
Reference: [15] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of Sakaguchi-type bi-univalent functions.Ganita 69 (2) (2019), 45–55. MR 4060858
Reference: [16] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: A generalized subclass of alpha-convex bi-univalent functions of complex order.Jnanabha 50 (1) (2020), 65–71. MR 3962610
Reference: [17] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers.Gen. Math. 28 (1) (2020), 1258–140. MR 3962610
Reference: [18] Sivapalan, J., Magesh, N., Murthy, S.: Coefficient estimates for bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials.Malaya J. Mat. 8 (2) (2020), 565–569. MR 4112566, 10.26637/MJM0802/0042
.

Files

Files Size Format View
ArchMathRetro_058-2022-2_3.pdf 406.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo