Previous |  Up |  Next

Article

Title: On prime labeling of union of tadpole graphs (English)
Author: Patel, Sanjaykumar K.
Author: Vasava, Jayesh B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 33-50
Summary lang: English
.
Category: math
.
Summary: A graph $G$ of order $n$ is said to be a prime graph if its vertices can be labeled with the first $n$ positive integers in such a way that the labels of any two adjacent vertices in $G$ are relatively prime. If such a labeling on $G$ exists then it is called a prime labeling. In this paper we seek prime labeling for union of tadpole graphs. We derive a necessary condition for the existence of prime labelings of graphs that are union of tadpole graphs and further show that the condition is also sufficient in case of union of two or three tadpole graphs. (English)
Keyword: prime labeling
Keyword: tadpole graph
Keyword: union of graphs
MSC: 05C78
idZBL: Zbl 07584112
idMR: MR4445736
DOI: 10.14712/1213-7243.2022.009
.
Date available: 2022-07-18T11:49:18Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150426
.
Reference: [1] Fu H.-L, Huang K. C.: On prime labellings.Discrete Math. 127 (1994), no. 1–3, 181–186. MR 1273601, 10.1016/0012-365X(92)00477-9
Reference: [2] Gallian J. A.: A dynamic survey of graph labeling.Electron. J. Combin. 5 (1998), Dynamic Survay 6, 43 pages. MR 1668059
Reference: [3] Kim S.-R., Park J. Y.: On super edge-magic graphs.Ars Combin. 81 (2006), 113–127. MR 2267806
Reference: [4] Klee S., Lehmann H., Park A.: Prime labeling of families of trees with Gaussian integers.AKCE Int. J. Graphs Combin. 13 (2016), no. 2, 165–176. MR 3560568, 10.1016/j.akcej.2016.04.001
Reference: [5] Patel S. K., Shrimali N. P.: Neighborhood-prime labeling of some product graphs.Algebra Discrete Math. 25 (2018), no. 1, 118–129. MR 3798298
Reference: [6] Patel S. K., Vasava J.: On prime labeling of some union graphs.Kragujevac J. Math. 42 (2018), no. 3, 441–452. MR 3856509, 10.5937/KgJMath1803441P
Reference: [7] Tout R., Dabboucy A. N., Howalla K.: Prime labeling of graphs.Nat. Acad. Sci. Lett. 11 (1982), 365–368.
Reference: [8] Truszczyński M.: Graceful unicyclic graphs.Demonstratio Math. 17 (1984), no. 2, 377–387. MR 0771559
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_4.pdf 2.598Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo