Previous |  Up |  Next

Article

Title: On the probability that two elements of a finite semigroup have the same right matrix (English)
Author: Nagy, Attila
Author: Tóth, Csaba
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 21-31
Summary lang: English
.
Category: math
.
Summary: We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix. (English)
Keyword: congruence
Keyword: equivalence relation
Keyword: probability
Keyword: semigroup
MSC: 20M10
MSC: 60B99
idZBL: Zbl 07584111
idMR: MR4445735
DOI: 10.14712/1213-7243.2022.008
.
Date available: 2022-07-18T11:48:17Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150433
.
Reference: [1] Ahmedidelir K., Campbell C. M., Doostie H.: Almost commutative semigroups.Algebra Colloq. 18 (2011), Special Issue no. 1, 881–888. MR 2860370, 10.1142/S1005386711000769
Reference: [2] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups, Vol. I..Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791
Reference: [3] Dixon J. D.: The probability of generating the symmetric group.Math. Z. 110 (1969), 199–205. MR 0251758, 10.1007/BF01110210
Reference: [4] Dixon J. D., Pyber L., Seress Á., Shalev A.: Residual properties of free groups and probabilistic methods.J. Reine Angew. Math. 556 (2003), 159–172. MR 1971144
Reference: [5] Eberhard S., Virchow S.-C.: The probability of generating the symmetric group.Combinatorica 39 (2019), no. 2, 273–288. MR 3962902, 10.1007/s00493-017-3629-5
Reference: [6] Gustafson W. H.: What is the probability that two group elements commute?.Amer. Math. Monthly 80 (1973), 1031–1034. MR 0327901, 10.1080/00029890.1973.11993437
Reference: [7] Howie J. M.: An Introduction to Semigroup Theory.L. M. S. Monographs, 7, Academic Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [8] MacHale D.: Commutativity in finite rings.Amer. Math. Monthly 83 (1975), no. 1, 30–32. MR 0384861, 10.1080/00029890.1976.11994032
Reference: [9] Nagy A.: Special Classes of Semigroups.Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265
Reference: [10] Nagy A.: Left reductive congruences on semigroups.Semigroup Forum 87 (2013), no. 1, 129–148. MR 3079776, 10.1007/s00233-012-9428-9
Reference: [11] Nagy A.: On faithful representations of finite semigroups $S$ of degree $|S|$ over the fields.Int. J. of Algebra 7 (2013), no. 1–4, 115–129. MR 3039386, 10.12988/ija.2013.13012
Reference: [12] Nagy A.: Remarks on the paper “M. Kolibiar, On a construction of semigroups".Period. Math. Hungar. 71 (2015), no. 2, 261–264. MR 3421700, 10.1007/s10998-015-0094-z
Reference: [13] Nagy A.: Left equalizer simple semigroups.Acta Math. Hungar. 148 (2016), no. 2, 300–311. MR 3498533, 10.1007/s10474-015-0578-6
Reference: [14] Nagy A., Rónyai L.: Finite semigroups whose semigroup algebra over a field has a trivial right annihilator.Int. J. of Contemp. Math. Sci. 9 (2014), no. 1–4, 25–36. MR 3158527, 10.12988/ijcms.2014.310115
Reference: [15] Petrich M.: Lectures in Semigroups.John Wiley & Sons, London, 1977. MR 0466270
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_3.pdf 198.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo