Title:
|
On the probability that two elements of a finite semigroup have the same right matrix (English) |
Author:
|
Nagy, Attila |
Author:
|
Tóth, Csaba |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
21-31 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix. (English) |
Keyword:
|
congruence |
Keyword:
|
equivalence relation |
Keyword:
|
probability |
Keyword:
|
semigroup |
MSC:
|
20M10 |
MSC:
|
60B99 |
idZBL:
|
Zbl 07584111 |
idMR:
|
MR4445735 |
DOI:
|
10.14712/1213-7243.2022.008 |
. |
Date available:
|
2022-07-18T11:48:17Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150433 |
. |
Reference:
|
[1] Ahmedidelir K., Campbell C. M., Doostie H.: Almost commutative semigroups.Algebra Colloq. 18 (2011), Special Issue no. 1, 881–888. MR 2860370, 10.1142/S1005386711000769 |
Reference:
|
[2] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups, Vol. I..Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791 |
Reference:
|
[3] Dixon J. D.: The probability of generating the symmetric group.Math. Z. 110 (1969), 199–205. MR 0251758, 10.1007/BF01110210 |
Reference:
|
[4] Dixon J. D., Pyber L., Seress Á., Shalev A.: Residual properties of free groups and probabilistic methods.J. Reine Angew. Math. 556 (2003), 159–172. MR 1971144 |
Reference:
|
[5] Eberhard S., Virchow S.-C.: The probability of generating the symmetric group.Combinatorica 39 (2019), no. 2, 273–288. MR 3962902, 10.1007/s00493-017-3629-5 |
Reference:
|
[6] Gustafson W. H.: What is the probability that two group elements commute?.Amer. Math. Monthly 80 (1973), 1031–1034. MR 0327901, 10.1080/00029890.1973.11993437 |
Reference:
|
[7] Howie J. M.: An Introduction to Semigroup Theory.L. M. S. Monographs, 7, Academic Press, London, 1976. Zbl 0355.20056, MR 0466355 |
Reference:
|
[8] MacHale D.: Commutativity in finite rings.Amer. Math. Monthly 83 (1975), no. 1, 30–32. MR 0384861, 10.1080/00029890.1976.11994032 |
Reference:
|
[9] Nagy A.: Special Classes of Semigroups.Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265 |
Reference:
|
[10] Nagy A.: Left reductive congruences on semigroups.Semigroup Forum 87 (2013), no. 1, 129–148. MR 3079776, 10.1007/s00233-012-9428-9 |
Reference:
|
[11] Nagy A.: On faithful representations of finite semigroups $S$ of degree $|S|$ over the fields.Int. J. of Algebra 7 (2013), no. 1–4, 115–129. MR 3039386, 10.12988/ija.2013.13012 |
Reference:
|
[12] Nagy A.: Remarks on the paper “M. Kolibiar, On a construction of semigroups".Period. Math. Hungar. 71 (2015), no. 2, 261–264. MR 3421700, 10.1007/s10998-015-0094-z |
Reference:
|
[13] Nagy A.: Left equalizer simple semigroups.Acta Math. Hungar. 148 (2016), no. 2, 300–311. MR 3498533, 10.1007/s10474-015-0578-6 |
Reference:
|
[14] Nagy A., Rónyai L.: Finite semigroups whose semigroup algebra over a field has a trivial right annihilator.Int. J. of Contemp. Math. Sci. 9 (2014), no. 1–4, 25–36. MR 3158527, 10.12988/ijcms.2014.310115 |
Reference:
|
[15] Petrich M.: Lectures in Semigroups.John Wiley & Sons, London, 1977. MR 0466270 |
. |