Previous |  Up |  Next

Article

Title: On power integral bases for certain pure number fields defined by $x^{18}-m$ (English)
Author: El Fadil, Lhoussain
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 11-19
Summary lang: English
.
Category: math
.
Summary: Let $K={\mathbb Q}(\alpha)$ be a number field generated by a complex root $\alpha$ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv \mp 1 {\rm(mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm(mod }{ 4})$ or $m\equiv 1 {\rm(mod }{ 9})$, then the number field $K$ is not monogenic. (English)
Keyword: power integral base
Keyword: theorem of Ore
Keyword: prime ideal factorization
MSC: 11R04
MSC: 11R16
MSC: 11R21
idZBL: Zbl 07584110
idMR: MR4445734
DOI: 10.14712/1213-7243.2022.005
.
Date available: 2022-07-18T11:46:52Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150432
.
Reference: [1] Ahmad S., Nakahara T., Hameed A.: On certain pure sextic fields related to a problem of Hasse.Int. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR 3506350, 10.1142/S0218196716500259
Reference: [2] Ahmad S., Nakahara T., Husnine S. M.: Power integral bases for certain pure sextic fields.Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR 3273484
Reference: [3] El Fadil L.: Computation of a power integral basis of a pure cubic number field.Int. J. Contemp. Math. Sci. 2 (2007), no. 13–16, 601–606. MR 2355834
Reference: [4] El Fadil L.: On Newton polygons techniques and factorization of polynomials over Henselian fields.J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pages. MR 4140128, 10.1142/S0219498820501881
Reference: [5] El Fadil L.: On power integral bases for certain pure number fields defined by $x^{24}-m$.Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR 4188148
Reference: [6] El Fadil L.: On power integral bases for certain pure number fields.Publ. Math. Debrecen 100 (2022), no. 1–2, 219–231. MR 4389255, 10.5486/PMD.2022.9138
Reference: [7] El Fadil L., Montes J., Nart E.: Newton polygons and $p$-integral bases of quartic number fields.J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pages. MR 2959422, 10.1142/S0219498812500739
Reference: [8] Funakura T.: On integral bases of pure quartic fields.Math. J. Okayama Univ. 26 (1984), 27–41. MR 0779772
Reference: [9] Gaál I.: Power integral bases in algebraic number fields.Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR 2118246
Reference: [10] Gaál I.: Diophantine Equations and Power Integral Bases.Theory and Algorithm, Birkhäuser/Springer, Cham, 2019. MR 3970246
Reference: [11] Gaál I., Olajos P., Pohst M.: Power integral bases in orders of composite fields.Experiment. Math. 11 (2002), no. 1, 87–90. MR 1960303, 10.1080/10586458.2002.10504471
Reference: [12] Gaál I., Remete L.: Binomial Thue equations and power integral bases in pure quartic fields.J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61.
Reference: [13] Gaál I., Remete L.: Integral bases and monogenity of pure fields.J. Number Theory 173 (2017), 129–146. MR 3581912, 10.1016/j.jnt.2016.09.009
Reference: [14] Hameed A., Nakahara T.: Integral bases and relative monogenity of pure octic fields.Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR 3443598
Reference: [15] Ore Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), no. 1, 84–117 (German). MR 1512440, 10.1007/BF01459087
Reference: [16] Pethö A., Pohst M.: On the indices of multiquadratic number fields.Acta Arith. 153 (2012), no. 4, 393–414. MR 2925379, 10.4064/aa153-4-4
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_2.pdf 208.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo