Title:
|
On power integral bases for certain pure number fields defined by $x^{18}-m$ (English) |
Author:
|
El Fadil, Lhoussain |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
11-19 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $K={\mathbb Q}(\alpha)$ be a number field generated by a complex root $\alpha$ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv \mp 1 {\rm(mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm(mod }{ 4})$ or $m\equiv 1 {\rm(mod }{ 9})$, then the number field $K$ is not monogenic. (English) |
Keyword:
|
power integral base |
Keyword:
|
theorem of Ore |
Keyword:
|
prime ideal factorization |
MSC:
|
11R04 |
MSC:
|
11R16 |
MSC:
|
11R21 |
idZBL:
|
Zbl 07584110 |
idMR:
|
MR4445734 |
DOI:
|
10.14712/1213-7243.2022.005 |
. |
Date available:
|
2022-07-18T11:46:52Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150432 |
. |
Reference:
|
[1] Ahmad S., Nakahara T., Hameed A.: On certain pure sextic fields related to a problem of Hasse.Int. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR 3506350, 10.1142/S0218196716500259 |
Reference:
|
[2] Ahmad S., Nakahara T., Husnine S. M.: Power integral bases for certain pure sextic fields.Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR 3273484 |
Reference:
|
[3] El Fadil L.: Computation of a power integral basis of a pure cubic number field.Int. J. Contemp. Math. Sci. 2 (2007), no. 13–16, 601–606. MR 2355834 |
Reference:
|
[4] El Fadil L.: On Newton polygons techniques and factorization of polynomials over Henselian fields.J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pages. MR 4140128, 10.1142/S0219498820501881 |
Reference:
|
[5] El Fadil L.: On power integral bases for certain pure number fields defined by $x^{24}-m$.Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR 4188148 |
Reference:
|
[6] El Fadil L.: On power integral bases for certain pure number fields.Publ. Math. Debrecen 100 (2022), no. 1–2, 219–231. MR 4389255, 10.5486/PMD.2022.9138 |
Reference:
|
[7] El Fadil L., Montes J., Nart E.: Newton polygons and $p$-integral bases of quartic number fields.J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pages. MR 2959422, 10.1142/S0219498812500739 |
Reference:
|
[8] Funakura T.: On integral bases of pure quartic fields.Math. J. Okayama Univ. 26 (1984), 27–41. MR 0779772 |
Reference:
|
[9] Gaál I.: Power integral bases in algebraic number fields.Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR 2118246 |
Reference:
|
[10] Gaál I.: Diophantine Equations and Power Integral Bases.Theory and Algorithm, Birkhäuser/Springer, Cham, 2019. MR 3970246 |
Reference:
|
[11] Gaál I., Olajos P., Pohst M.: Power integral bases in orders of composite fields.Experiment. Math. 11 (2002), no. 1, 87–90. MR 1960303, 10.1080/10586458.2002.10504471 |
Reference:
|
[12] Gaál I., Remete L.: Binomial Thue equations and power integral bases in pure quartic fields.J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61. |
Reference:
|
[13] Gaál I., Remete L.: Integral bases and monogenity of pure fields.J. Number Theory 173 (2017), 129–146. MR 3581912, 10.1016/j.jnt.2016.09.009 |
Reference:
|
[14] Hameed A., Nakahara T.: Integral bases and relative monogenity of pure octic fields.Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR 3443598 |
Reference:
|
[15] Ore Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), no. 1, 84–117 (German). MR 1512440, 10.1007/BF01459087 |
Reference:
|
[16] Pethö A., Pohst M.: On the indices of multiquadratic number fields.Acta Arith. 153 (2012), no. 4, 393–414. MR 2925379, 10.4064/aa153-4-4 |
. |