Previous |  Up |  Next

Article

Title: A note on measure-valued solutions to the full Euler system (English)
Author: Mácha, Václav
Author: Wiedemann, Emil
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 4
Year: 2022
Pages: 419-430
Summary lang: English
.
Category: math
.
Summary: We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations. (English)
Keyword: measure-valued solution
Keyword: compressible Euler system
MSC: 35B99
MSC: 35Q31
idZBL: Zbl 07584078
idMR: MR4444785
DOI: 10.21136/AM.2021.0279-20
.
Date available: 2022-06-28T13:19:40Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/150434
.
Reference: [1] Baba, H. Al, Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Nonuniqueness of admissible weak solutions to the Riemann problem for the full Euler system in two dimensions.SIAM J. Math. Anal. 52 (2020), 1729-1760. Zbl 1437.35474, MR 4083343, 10.1137/18M1190872
Reference: [2] Y. Brenier, C. De Lellis, L. Székelyhidi, Jr.: Weak-strong uniqueness for measure-valued solutions.Commun. Math. Phys. 305 (2011), 351-361. Zbl 1219.35182, MR 2805464, 10.1007/s00220-011-1267-0
Reference: [3] Březina, J.: Existence of a measure-valued solutions to a complete Euler system for a perfect gas.RIMS Kokyuroku 2020 (2020), Article ID 2144, 24 pages Available at http://hdl.handle.net/2433/254987.
Reference: [4] Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system.J. Math. Soc. Japan 70 (2018), 1227-1245. Zbl 1408.35134, MR 3868717, 10.2969/jmsj/77337733
Reference: [5] Březina, J., Feireisl, E., Novotný, A.: Stability of strong solutions to the Navier-StokesFourier system.SIAM J. Math. Anal. 52 (2020), 1761-1785. Zbl 1439.35365, MR 4083344, 10.1137/18M1223022
Reference: [6] Chiodaroli, E., Lellis, C. De, Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics.Commun. Pure Appl. Math. 68 (2015), 1157-1190. Zbl 1323.35137, MR 3352460, 10.1002/cpa.21537
Reference: [7] Chiodaroli, E., Feireisl, E., Kreml, O., Wiedemann, E.: $\mathcal A$-free rigidity and applications to the compressible Euler system.Ann. Mat. Pura Appl. (4) 196 (2017), 1557-1572. Zbl 1382.35201, MR 3673680, 10.1007/s10231-016-0629-9
Reference: [8] DiPerna, R. J., Majda, A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Commun. Math. Phys. 108 (1987), 667-689. Zbl 0626.35059, MR 0877643, 10.1007/BF01214424
Reference: [9] Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier-Stokes system.Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 141, 20 pages. Zbl 1360.35143, MR 3567640, 10.1007/s00526-016-1089-1
Reference: [10] Fjordholm, U. S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions.Acta Numerica 25 (2016), 567-679. Zbl 1382.76001, MR 3509212, 10.1017/S0962492916000088
Reference: [11] Frisch, U.: Turbulence. The Legacy of A. N. Kolmogorov.Cambridge University Press, Cambridge (1995). Zbl 0832.76001, MR 1428905, 10.1017/CBO9781139170666
Reference: [12] Gallenmüller, D., Wiedemann, E.: On the selection of measure-valued solutions for the isentropic Euler system.J. Differ. Equations 271 (2021), 979-1006. Zbl 07283605, MR 4154934, 10.1016/j.jde.2020.09.028
Reference: [13] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models.Nonlinearity 28 (2015), 3873-3890. Zbl 1336.35291, MR 3424896, 10.1088/0951-7715/28/11/3873
Reference: [14] Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients.Arch. Ration. Mech. Anal. 115 (1991), 329-365. Zbl 0754.49020, MR 1120852, 10.1007/BF00375279
Reference: [15] Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces.J. Geom. Anal. 4 (1994), 59-90. Zbl 0808.46046, MR 1274138, 10.1007/BF02921593
Reference: [16] Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed.Nonlinearity 33 (2020), 6517-6540. Zbl 07278317, MR 4164684, 10.1088/1361-6544/aba3b2
Reference: [17] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Grundlehren der Mathematischen Wissenschaften 258. Springer, New York (1994). Zbl 0807.35002, MR 1301779, 10.1007/978-1-4612-0873-0
Reference: [18] L. Székelyhidi, Jr., E. Wiedemann: Young measures generated by ideal incompressible fluid flows.Arch. Ration. Mech. Anal. 206 (2012), 333-366. Zbl 1256.35072, MR 2968597, 10.1007/s00205-012-0540-5
Reference: [19] Wiedemann, E.: Weak-strong uniqueness in fluid dynamics.Partial Differential Equations in Fluid Mechanics London Mathematical Society Lecture Note Series 452. Cambridge University Press, Cambridge (2018), 289-326. Zbl 1408.35158, MR 3838055
.

Files

Files Size Format View
AplMat_67-2022-4_1.pdf 260.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo