Title:
|
Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems (English) |
Author:
|
Song, Chang-Ho |
Author:
|
Ri, Yong-Gon |
Author:
|
Sin, Cholmin |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
431-444 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic $p$-curl systems. (English) |
Keyword:
|
well-posedness |
Keyword:
|
uniform monotonicity |
Keyword:
|
S-property |
Keyword:
|
$p$-curl systems |
MSC:
|
35A15 |
MSC:
|
35D30 |
MSC:
|
47H05 |
MSC:
|
65N30 |
MSC:
|
78M10 |
MSC:
|
78M30 |
idZBL:
|
Zbl 07584079 |
idMR:
|
MR4444786 |
DOI:
|
10.21136/AM.2021.0365-20 |
. |
Date available:
|
2022-06-28T13:20:31Z |
Last updated:
|
2024-09-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150436 |
. |
Reference:
|
[1] Antontsev, S., Miranda, F., Santos, L.: A class of electromagnetic $p$-curl systems: Blow-up and finite time extinction.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 3916-3929. Zbl 1246.35102, MR 2914580, 10.1016/j.na.2012.02.011 |
Reference:
|
[2] Antontsev, S., Miranda, F., Santos, L.: Blow-up and finite time extinction for $p(x,t)$-curl systems arising in electromagnetism.J. Math. Anal. Appl. 440 (2016), 300-322 \99999DOI99999 10.1016/j.jmaa.2016.03.045 . Zbl 1339.35060, MR 3479601, 10.1016/j.jmaa.2016.03.045 |
Reference:
|
[3] Aramaki, J.: $L^p$ theory for the div-curl system.Int. J. Math. Anal., Ruse 8 (2014), 259-271 \99999DOI99999 10.12988/ijma.2014.4112 . MR 3188605 |
Reference:
|
[4] Bahrouni, A., Repovš, D.: Existence and nonexistence of solutions for $p(x)$-curl systems arising in electromagnetism.Complex Var. Elliptic Equ. 63 (2018), 292-301 \99999DOI99999 10.1080/17476933.2017.1304390 . Zbl 1423.35124, MR 3764762 |
Reference:
|
[5] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics. Springer, Berlin (2010),\99999DOI99999 10.1007/978-1-4419-5542-5 . Zbl 1197.35002, MR 2582280 |
Reference:
|
[6] Cimrák, I., Keer, R. Van: Level set method for the inverse elliptic problem in nonlinear electromagnetism.J. Comput. Phys. 229 (2010), 9269-9283 \99999DOI99999 10.1016/j.jcp.2010.08.038 . Zbl 1207.78045, MR 2733153 |
Reference:
|
[7] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958),\99999MR99999 0117523 . Zbl 0084.10402, MR 0117523 |
Reference:
|
[8] u, J. Franc\accent23: Monotone operators: A survey directed to applications to differential equations.Appl. Math. 35 (1990), 257-301 \99999DOI99999 10.21136/AM.1990.104411 . Zbl 0724.47025, MR 1065003 |
Reference:
|
[9] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38. Akademie, Berlin (1974), German \99999MR99999 0636412 . Zbl 0289.47029, MR 0636412 |
Reference:
|
[10] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006),\99999DOI99999 10.1093/acprof:oso/9780198566656.001.0001 . Zbl 1107.76001, MR 2289481 |
Reference:
|
[11] Janíková, E., Slodička, M.: Fully discrete linear approximation scheme for electric field diffusion in type-II superconductors.J. Comput. Appl. Math. 234 (2010), 2054-2061 \99999DOI99999 10.1016/j.cam.2009.08.063 . Zbl 1195.82105, MR 2652398 |
Reference:
|
[12] László, S. C.: The Theory of Monotone Operators with Applications.Babes-Bolyai University, Budapest (2011) . |
Reference:
|
[13] Xiang, M., Wang, F., Zhang, B.: Existence and multiplicity for $p(x)$-curl systems arising in electromagnetism.J. Math. Anal. Appl. 448 (2017), 1600-1617 \99999DOI99999 10.1016/j.jmaa.2016.11.086 . Zbl 1358.35181, MR 3582298 |
Reference:
|
[14] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2 |
. |