Previous |  Up |  Next

Article

Title: The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model (English)
Author: Ramachandramurthy, Venkatesh
Author: Kavitha, Nagasundar
Author: Aruna, Agrahara Sanjeevmurthy
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 4
Year: 2022
Pages: 509-523
Summary lang: English
.
Category: math
.
Summary: The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of convection. The effect of an increase in the thermorheological parameter leads to destabilization in the system, while the Chandrasekhar number and the couple-stress parameter have the opposite effect. The generalized Lorenz's model of the problem is essentially the classical Lorenz model but with coefficients involving the impact of three mechanisms as discussed earlier. The classical Lorenz model is a fifth-order autonomous system and found to be analytically intractable. Therefore, the Lorenz system is solved numerically using the Runge-Kutta method in order to quantify heat transfer. An effect of increasing the thermorheological parameter is found to enhance heat transfer, while the couple-stress parameter and the Chandrasekhar number diminishes the same. (English)
Keyword: \kern -.725ptRayleigh-Bénard convection
Keyword: Boussinesq-Stokes suspension
Keyword: variable viscosity
Keyword: magnetoconvection
Keyword: Lorenz model
MSC: 35Q35
MSC: 76E30
MSC: 76W05
idZBL: Zbl 07584083
idMR: MR4444790
DOI: 10.21136/AM.2021.0010-21
.
Date available: 2022-06-28T13:23:21Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/150440
.
Reference: [1] Aruna, A. S.: Non-linear Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source.Pramana 94 (2020), Article ID 153, 10 pages. 10.1007/s12043-020-02007-7
Reference: [2] Busse, F. H., Frick, H.: Square-pattern in fluids with strongly temperature-dependent viscosity.J. Fluid Mech. 150 (1985), 451-465. Zbl 0588.76073, 10.1017/S0022112085000222
Reference: [3] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability.International Series of Monographs on Physics. Clarendon Press, Oxford (1961). Zbl 0142.44103, MR 128226
Reference: [4] Eringen, A. C.: Theory of micropolar fluids.J. Math. Mech. 16 (1966), 1-18. MR 0204005, 10.1512/iumj.1967.16.16001
Reference: [5] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.: Buoyancy Induced Flows and Transport.Springer, Berlin (1988). Zbl 0699.76001
Reference: [6] Hassan, M. A., Pathak, M., Khan, M. K.: Rayleigh-Bénard convection in Herschel-Bulkley fluid.J. Non-Newton. Fluid Mech. 226 (2015), 32-45. MR 3426008, 10.1016/j.jnnfm.2015.10.003
Reference: [7] Hirayama, O., Takaki, R.: Thermal convection of fluid with temperature-dependent viscosity.Fluid Dyn. Res. 12 (1993), 2855-2867. 10.1016/0169-5983(93)90103-H
Reference: [8] Maruthamanikandan, S., Thomas, N. M., Mathew, S.: Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation.J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages. 10.1088/1742-6596/1139/1/012024
Reference: [9] Platten, J. K., Legros, J. C.: Convection in Liquids.Springer, Berlin (1984). Zbl 0545.76048, 10.1007/978-3-642-82095-3
Reference: [10] Rajagopal, K. R., Ruzicka, M., Srinivasa, A. R.: On the Oberbeck-Boussinesq approximation.Math. Models Methods Appl. Sci. 6 (1996), 1157-1167. Zbl 0883.76078, MR 1428150, 10.1142/S0218202596000481
Reference: [11] Rajagopal, R., Shelin, E. J., Sangeetha, K. G.: A non-linear stability analysis of Rayleigh-Bénard magnetoconvection of a couple stress fluid in the presence of rotational modulation.Int. J. Math. Trends Tech. 54 (2018), 477-484. 10.14445/22315373/IJMTT-V54P558
Reference: [12] Ramachandramurthy, V., Aruna, A. S., Kavitha, N.: Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source.Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages. Zbl 07322692, MR 4062157, 10.1007/s40819-020-0781-1
Reference: [13] Ramachandramurthy, V., Uma, D., Kavitha, N.: Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source.Int. J. Appl. Eng. Res. 14 (2019), 2126-2123.
Reference: [14] Riahi, N.: Nonlinear convection in a horizontal layer with an internal heat source.J. Phys. Soc. Japan 53 (1984), 4169-4178. MR 0779210, 10.1143/JPSJ.53.4169
Reference: [15] Saffman, P. G.: On the stability of laminar flow of a dusty gas.J. Fluid Mech. 13 (1962), 120-128. Zbl 0105.39605, MR 0137418, 10.1017/S0022112062000555
Reference: [16] Sekhar, G. N., Jayalatha, G., Prakash, R.: Thermal convection in variable viscosity ferromagnetic liquids with heat source.Int. J. Appl. Comput. Math. 3 (2017), 3539-3559. Zbl 1397.76124, MR 3716003, 10.1007/s40819-017-0313-9
Reference: [17] Severin, J., Herwig, H.: Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach.Z. Angew. Math. Phys. 50 (1999), 375-386. Zbl 0926.76045, MR 1697713, 10.1007/PL00001494
Reference: [18] Siddheshwar, P. G.: Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g or $\mu$g.Pramana 62 (2004), 61-68. 10.1007/BF02704425
Reference: [19] Siddheshwar, P. G., Pranesh, S.: Magnetoconvection in fluids with suspended particles under 1g and $\mu$g.Aerosp. Sci. Technol. 6 (2002), 105-114. Zbl 1006.76545, 10.1016/S1270-9638(01)01144-0
Reference: [20] Siddheshwar, P. G., Ramachandramurthy, V., Uma, D.: Rayleigh-Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects.Int. J. Eng. Sci. 49 (2011), 1078-1094. Zbl 1423.76504, 10.1016/j.ijengsci.2011.05.020
Reference: [21] Siddheshwar, P. G., Siddabasappa, C.: Linear and weakly nonlinear stability analysis of two-dimensional, steady Brinkman-Bénard convection using local thermal non-equilibrium model.Transp. Porous Media 120 (2017), 605-631. MR 3722204, 10.1007/s11242-017-0943-8
Reference: [22] Siddheshwar, P. G., Titus, P. S.: Nonlinear Rayleigh-Bénard convection with variable heat source.J. Heat Transfer 135 (2013), Article ID 122502, 12 pages. 10.1115/1.4024943
Reference: [23] Somerscales, E. F. C., Dougherty, T. S.: Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below.J. Fluid Mech. 42 (1970), 755-768. 10.1017/S0022112070001593
Reference: [24] Stengel, K. C., Oliver, D. S., Booker, J. R.: Onset of convection in a variable-viscosity fluid.J. Fluid Mech. 120 (1982), 411-431. Zbl 0534.76093, 10.1017/S0022112082002821
Reference: [25] Stokes, V. K.: Couple stresses in fluids.Theories of Fluids with Microstructure Springer, Berlin (1966), 34-80. 10.1007/978-3-642-82351-0
Reference: [26] Torrance, K. E., Turcotte, D. L.: Thermal convection with large viscosity variation.J. Fluid Mech. 47 (1971), 113-125. 10.1017/S002211207100096X
Reference: [27] Walicki, E., Walicka, A.: Inertia effect in the squeeze film of a couple-stress fluid in biological bearings.Appl. Mech. Eng. 4 (1999), 363-373. Zbl 0971.76108
.

Files

Files Size Format View
AplMat_67-2022-4_6.pdf 376.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo