Title:
|
Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations (English) |
Author:
|
Zhang, Zujin |
Author:
|
Tong, Chenxuan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
485-507 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C}{r^{10}},\quad 0<r\leq \frac {1}{2}. $$ By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing $\omega ^r$, $\omega ^z$ and $\omega ^\theta /r$ on different hollow cylinders, we are able to improve it and obtain $$ |\omega ^r(x,t)|+|\omega ^z(r,t)|\leq \frac {C|{\rm ln} r|}{r^{17/2}},\quad 0<r\leq \frac 12. $$ (English) |
Keyword:
|
axisymmetric Navier-Stokes equations |
Keyword:
|
weighted a priori bounds |
MSC:
|
35B65 |
MSC:
|
35Q35 |
MSC:
|
76D03 |
idZBL:
|
Zbl 07584082 |
idMR:
|
MR4444789 |
DOI:
|
10.21136/AM.2021.0344-20 |
. |
Date available:
|
2022-06-28T13:22:19Z |
Last updated:
|
2024-09-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150439 |
. |
Reference:
|
[1] Chae, D., Lee, J.: On the regularity of the axisymmetric solutions of the Navier-Stokes equations.Math. Z. 239 (2002), 645-671. Zbl 0992.35068, MR 1902055, 10.1007/s002090100317 |
Reference:
|
[2] Chen, H., Fang, D., Zhang, T.: Regularity of 3D axisymmetric Navier-Stokes equations.Discrete Contin. Dyn. Syst. 37 (2017), 1923-1939. Zbl 1364.35114, MR 3640581, 10.3934/dcds.2017081 |
Reference:
|
[3] Chen, Q., Zhang, Z.: Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations.J. Math. Anal. Appl. 331 (2007), 1384-1395. Zbl 1151.35067, MR 2313720, 10.1016/j.jmaa.2006.09.069 |
Reference:
|
[4] Gala, S.: On the regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 775-782. Zbl 1205.35194, MR 2738629, 10.1016/j.na.2010.09.026 |
Reference:
|
[5] Gallay, T., Šverák, V.: Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations.Confluentes Math. 7 (2015), 67-92. Zbl 1356.35159, MR 4059266, 10.5802/cml.25 |
Reference:
|
[6] Hou, T. Y., Li, C.: Global well-posedness of the viscous Boussinesq equations.Discrete Contin. Dyn. Syst. 12 (2005), 1-12. Zbl 1274.76185, MR 2121245, 10.3934/dcds.2005.12.1 |
Reference:
|
[7] Kreml, O., Pokorný, M.: A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations.Electron J. Differ. Equ. 2007 (2007), Article ID 08, 10 pages. Zbl 1387.35456, MR 2278422 |
Reference:
|
[8] Kubica, A., Pokorný, M., Zajączkowski, W.: Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations.Math. Methods Appl. Sci. 35 (2012), 360-371. Zbl 1236.35107, MR 2876817, 10.1002/mma.1586 |
Reference:
|
[9] Ladyzhenskaya, O. A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry.Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 7 (1968), 155-177 Russian. Zbl 0195.10603, MR 0241833 |
Reference:
|
[10] Lei, Z., Navas, E. A., Zhang, Q. S.: A priori bound on the velocity in axially symmetric Navier-Stokes equations.Commun. Math. Phys. 341 (2016), 289-307. Zbl 1341.35102, MR 3439228, 10.1007/s00220-015-2496-4 |
Reference:
|
[11] Lei, Z., Zhang, Q. S.: A Liouville theorem for the axially-symmetric Navier-Stokes equations.J. Funct. Anal. 261 (2011), 2323-2345. Zbl 1244.35105, MR 2824580, 10.1016/j.jfa.2011.06.016 |
Reference:
|
[12] Lei, Z., Zhang, Q. S.: Criticality of the axially symmetric Navier-Stokes equations.Pac. J. Math. 289 (2017), 169-187. Zbl 06722850, MR 3652459, 10.2140/pjm.2017.289.169 |
Reference:
|
[13] Leonardi, S., Málek, J., Nečas, J., Pokorný, M.: On axially symmetric flows in $\mathbb R^3$.Z. Anal. Anwend. 18 (1999), 639-649. Zbl 0943.35066, MR 1718156, 10.4171/ZAA/903 |
Reference:
|
[14] Loftus, J. B., Zhang, Q. S.: A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations.Adv. Differ. Equ. 15 (2010), 531-560. Zbl 1195.35240, MR 2643234 |
Reference:
|
[15] Neustupa, J., Pokorný, M.: Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component.Math. Bohem. 126 (2001), 469-481. Zbl 0981.35046, MR 1844284, 10.21136/MB.2001.134015 |
Reference:
|
[16] Pokorný, M.: A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations.Elliptic and Parabolic Problems World Scientific, Singapore (2002), 233-242. Zbl 1033.35085, MR 1937543, 10.1142/9789812777201_0022 |
Reference:
|
[17] Renc{ł}awowicz, J., Zajączkowski, W. M.: On some regularity criteria for axisymmetric Navier-Stokes equations.J. Math. Fluid Mech. 21 (2019), Article ID 51, 14 pages. Zbl 1448.76055, MR 4010661, 10.1007/s00021-019-0447-0 |
Reference:
|
[18] Uhkovskii, M. R., Iudovich, V. I.: Axially symmetric flows of ideal and viscous fluids filling the whole space.J. Appl. Math. Mech. 32 (1968), 52-62. Zbl 0172.53405, MR 0239293, 10.1016/0021-8928(68)90147-0 |
Reference:
|
[19] Wei, D.: Regularity criterion to the axially symmetric Navier-Stokes equations.J. Math. Anal. Appl. 435 (2016), 402-413. Zbl 1330.35298, MR 3423404, 10.1016/j.jmaa.2015.09.088 |
Reference:
|
[20] Zhang, P., Zhang, T.: Global axisymmetric solutions to three-dimensional Navier-Stokes system.Int. Math. Res. Not. 2014 (2014), 610-642. Zbl 07357636, MR 3163561, 10.1093/imrn/rns232 |
Reference:
|
[21] Zhang, Z.: Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data.Ann. Pol. Math. 117 (2016), 181-196. Zbl 1359.35163, MR 3539076, 10.4064/ap3856-3-2016 |
Reference:
|
[22] Zhang, Z.: On weighted regularity criteria for the axisymmetric Navier-Stokes equations.Appl. Math. Comput. 296 (2017), 18-22. Zbl 1411.35222, MR 3572774, 10.1016/j.amc.2016.10.001 |
Reference:
|
[23] Zhang, Z.: A pointwise regularity criterion for axisymmetric Navier-Stokes system.J. Math. Anal. Appl. 461 (2018), 1-6. Zbl 1390.35239, MR 3759525, 10.1016/j.jmaa.2017.12.069 |
Reference:
|
[24] Zhang, Z.: Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl.Comput. Math. Appl. 76 (2018), 1420-1426. Zbl 1434.35072, MR 3850659, 10.1016/j.camwa.2018.06.035 |
Reference:
|
[25] Zhang, Z.: New a priori estimates for the axisymmetric Navier-Stokes system.Appl. Math. Lett. 92 (2019), 139-143. Zbl 1417.35098, MR 3903956, 10.1016/j.aml.2019.01.022 |
Reference:
|
[26] Zhang, Z., Ouyang, X., Yang, X.: Refined a priori estimates for the axisymmetric Navier-Stokes equations.J. Appl. Anal. Comput. 7 (2017), 554-558. Zbl 07309521, MR 3602437, 10.11948/2017034 |
. |