Previous |  Up |  Next

Article

Title: Bicrossed products of generalized Taft algebra and group algebras (English)
Author: Wang, Dingguo
Author: Cheng, Xiangdong
Author: Lu, Daowei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 3
Year: 2022
Pages: 801-816
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_{m,d}(q)\bowtie k[G]$ between the generalized Taft algebra $H_{m,d}(q)$ and group algebra $k[G]$ is actually the smash product $H_{m,d}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_{m,d}(q)\bowtie k[ C_{n_1}\times C_{n_2}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group. (English)
Keyword: generalized Taft algebra
Keyword: factorization problem
Keyword: bicrossed product
MSC: 16S40
MSC: 16T05
idZBL: Zbl 07584103
idMR: MR4467943
DOI: 10.21136/CMJ.2022.0176-21
.
Date available: 2022-08-22T08:23:40Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/150618
.
Reference: [1] Agore, A. L.: Classifying bicrossed products of two Taft algebras.J. Pure Appl. Algebra 222 (2018), 914-930. Zbl 1416.16033, MR 3720860, 10.1016/j.jpaa.2017.05.014
Reference: [2] Agore, A. L.: Hopf algebras which factorize through the Taft algebra $T_{m^2}(q)$ and the group Hopf algebra $K[C_n]$.SIGMA, Symmetry Integrability Geom. Methods Appl. 14 (2018), Article ID 027, 14 pages. Zbl 1414.16027, MR 3778923, 10.3842/SIGMA.2018.027
Reference: [3] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras.Algebr. Represent. Theory 17 (2014), 227-264. Zbl 1351.16031, MR 3160722, 10.1007/s10468-012-9396-5
Reference: [4] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups.Algebr. Represent. Theory 12 (2009), 481-488. Zbl 1187.20023, MR 2501197, 10.1007/s10468-009-9145-6
Reference: [5] Agore, A. L., Militaru, G.: Classifying complements for Hopf algebras and Lie algebras.J. Algebra 391 (2013), 193-208. Zbl 1293.16026, MR 3081628, 10.1016/j.jalgebra.2013.06.012
Reference: [6] Agore, A. L., Năstăsescu, L.: Bicrossed products with the Taft algebra.Arch. Math. 113 (2019), 21-36. Zbl 1447.16025, MR 3960780, 10.1007/s00013-019-01328-3
Reference: [7] Aguiar, M., Andruskiewitsch, N.: Representations of matched pairs of groupoids and applications to weak Hopf algebras.Algebraic Structures and Their Representations Contemporary Mathematics 376 (2005), 127-173. Zbl 1100.16032, MR 2147019, 10.1090/conm/376
Reference: [8] Bontea, C. G.: Classifying bicrossed products of two Sweedler's Hopf algebras.Czech. Math. J. 64 (2014), 419-431. Zbl 1322.16022, MR 3277744, 10.1007/s10587-014-0109-6
Reference: [9] Brzeziński, T.: Deformation of algebra factorisations.Commun. Algebra 29 (2001), 737-748. Zbl 1003.16024, MR 1841995, 10.1081/AGB-100001537
Reference: [10] Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras.Algebr. Represent. Theory 3 (2000), 19-42. Zbl 0957.16027, MR 1755802, 10.1023/A:1009917210863
Reference: [11] Chen, X.-W., Huang, H.-L., Ye, Y., Zhang, P.: Monomial Hopf algebras.J. Algebra 275 (2004), 212-232. Zbl 1071.16030, MR 2047446, 10.1016/j.jalgebra.2003.12.019
Reference: [12] Cibils, C.: A quiver quantum group.Commun. Math. Phys. 157 (1993), 459-477. Zbl 0806.16039, MR 1243707, 10.1007/BF02096879
Reference: [13] Huang, H., Chen, H., Zhang, P.: Generalized Taft algebras.Algebra Colloq. 11 (2004), 313-320. Zbl 1079.16026, MR 2081190
Reference: [14] Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups.Algebr. Represent. Theory 18 (2015), 1267-1297. Zbl 1354.16042, MR 3422470, 10.1007/s10468-015-9540-0
Reference: [15] Keilberg, M.: Quasitriangular structures of the double of a finite group.Commun. Algebra 46 (2018), 5146-5178. Zbl 1414.16028, MR 3923748, 10.1080/00927872.2018.1461883
Reference: [16] Lu, D., Ning, Y., Wang, D.: The bicrossed products of $H_4$ and $H_8$.Czech. Math. J. 70 (2020), 959-977. Zbl 07285973, MR 4181790, 10.21136/CMJ.2020.0079-19
Reference: [17] Maillet, E.: Sur les groupes échangeables et les groupes décomposables.Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02. MR 1504357, 10.24033/bsmf.617
Reference: [18] Majid, S.: Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction.J. Algebra 130 (1990), 17-64. Zbl 0694.16008, MR 1045735, 10.1016/0021-8693(90)90099-A
Reference: [19] Majid, S.: Foundations of Quantum Group Theory.Cambridge University Press, Cambridge (1995). Zbl 0857.17009, MR 1381692, 10.1017/CBO9780511613104
Reference: [20] Michor, P. W.: Knit product of graded Lie algebras and groups.Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175. Zbl 0954.17508, MR 1061798
Reference: [21] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra.Proc. Am. Math. Soc. 53 (1975), 9-15. Zbl 0324.16009, MR 0396652, 10.1090/S0002-9939-1975-0396652-0
Reference: [22] Taft, E. J.: The order of the antipode of a finite-dimensional Hopf algebra.Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. Zbl 0222.16012, MR 0286868, 10.1073/pnas.68.11.2631
Reference: [23] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras.Commun. Algebra 9 (1981), 841-882. Zbl 0456.16011, MR 0611561, 10.1080/00927878108822621
Reference: [24] Zappa, G.: Sulla costruzione dei gruppi prodotto di dati sottogruppi permutabili tra loro.Atti 2. Congr. Un. Mat. Ital., Bologna 1942 (1942), 119-125 Italian. Zbl 0026.29104, MR 0019090
.

Files

Files Size Format View
CzechMathJ_72-2022-3_13.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo