Previous |  Up |  Next

Article

Title: On sums and products in a field (English)
Author: Zhou, Guang-Liang
Author: Sun, Zhi-Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 3
Year: 2022
Pages: 817-823
Summary lang: English
.
Category: math
.
Summary: We study sums and products in a field. Let $F$ be a field with ${\rm ch}(F)\not =2$, where ${\rm {\rm ch} } (F)$ is the characteristic of $F$. For any integer $k\geq 4$, we show that any $x\in F$ can be written as $a_1+\dots +a_k$ with $a_1,\dots ,a_k\in F$ and $a_1\dots a_k=1$, and that for any $\alpha \in F \setminus \{0\}$ we can write every $x\in F$ as $a_1\dots a_k$ with $a_1,\dots ,a_k\in F$ and $a_1+\dots +a_k=\alpha $. We also prove that for any $x\in F$ and $k\in \{2,3,\dots \}$ there are $a_1,\dots ,a_{2k}\in F$ such that $a_1+\dots +a_{2k}=x=a_1\dots a_{2k}$. (English)
Keyword: field
Keyword: rational function
Keyword: restricted sum
Keyword: restricted product
MSC: 11D85
MSC: 11P99
MSC: 11T99
idZBL: Zbl 07584104
idMR: MR4467944
DOI: 10.21136/CMJ.2021.0184-21
.
Date available: 2022-08-22T08:24:17Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/150619
.
Reference: [1] Elkies, N. D.: On the areas of rational triangles or how did Euler (and how can we) solve $xyz(x+y+z)=a$?.Available at \let \relax\brokenlink{http://www.math.harvard.edu/ elkies/{euler_14t.pdf}} (2014), 50 pages.
Reference: [2] Klyachko, A. A., Mazhuga, A. M., Ponfilenko, A. N.: Balanced factorisations in some algebras.Available at https://arxiv.org/abs/1607.01957 (2016), 4 pages.
Reference: [3] Klyachko, A. A., Vassilyev, A. N.: Balanced factorisations.Available at https://arxiv.org/abs/1506.01571 (2015), 8 pages. MR 3593641
Reference: [4] Zypen, D. van der: Question on a generalisation of a theorem by Euler.Question 302933 at MathOverflow, June 16, 2018. Available at http://mathoverflow.net/questions/302933.
.

Files

Files Size Format View
CzechMathJ_72-2022-3_14.pdf 180.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo