Title:
|
Complex symmetry of Toeplitz operators on the weighted Bergman spaces (English) |
Author:
|
Hu, Xiao-He |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
855-873 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a concrete description of complex symmetric monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_{z^p \bar {z}^q}$ to be complex symmetric. When $p,q \in \mathbb {N}^2$, we prove that $T_{z^p \bar {z}^q}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on $A^2(\mathbb {D}_{n})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$. (English) |
Keyword:
|
complex symmetry |
Keyword:
|
Toeplitz operator |
Keyword:
|
weighted Bergman space |
MSC:
|
32A36 |
MSC:
|
47B35 |
idZBL:
|
Zbl 07584106 |
idMR:
|
MR4467946 |
DOI:
|
10.21136/CMJ.2022.0210-21 |
. |
Date available:
|
2022-08-22T08:25:10Z |
Last updated:
|
2024-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150621 |
. |
Reference:
|
[1] Bu, Q., Chen, Y., Zhu, S.: Complex symmetric Toeplitz operators.Integral Equations Oper. Theory 93 (2021), Article ID 15, 19 pages. Zbl 07345264, MR 4233225, 10.1007/s00020-021-02629-5 |
Reference:
|
[2] Dong, X.-T., Zhu, K.: Commutators and semi-commutators of Toeplitz operators on the unit ball.Integral Equations Oper. Theory 86 (2016), 271-300. Zbl 1448.47038, MR 3568017, 10.1007/s00020-016-2326-x |
Reference:
|
[3] Garcia, S. R., Poore, D. E.: On the norm closure problem for complex symmetric operators.Proc. Am. Math. Soc. 141 (2013), 549. Zbl 1264.47003, MR 2996959, 10.1090/S0002-9939-2012-11347-4 |
Reference:
|
[4] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications.Trans. Am. Math. Soc. 358 (2006), 1285-1315. Zbl 1087.30031, MR 2187654, 10.1090/S0002-9947-05-03742-6 |
Reference:
|
[5] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. II.Trans. Am. Math. Soc. 359 (2007), 3913-3931. Zbl 1123.47030, MR 2302518, 10.1090/S0002-9947-07-04213-4 |
Reference:
|
[6] Garcia, S. R., Wogen, W. R.: Complex symmetric partial isometries.J. Funct. Anal. 257 (2009), 1251-1260. Zbl 1166.47023, MR 2535469, 10.1016/j.jfa.2009.04.005 |
Reference:
|
[7] Garcia, S. R., Wogen, W. R.: Some new classes of complex symmetric operators.Trans. Am. Math. Soc. 362 (2010), 6065-6077. Zbl 1208.47036, MR 2661508, 10.1090/S0002-9947-2010-05068-8 |
Reference:
|
[8] Guo, K., Ji, Y., Zhu, S.: A $C^*$-algebra approach to complex symmetric operators.Trans. Am. Math. Soc. 367 (2015), 6903-6942. Zbl 1393.47018, MR 3378818, 10.1090/S0002-9947-2015-06215-1 |
Reference:
|
[9] Guo, K., Zhu, S.: A canonical decomposition of complex symmetric operators.J. Oper. Theory 72 (2014), 529-547. Zbl 1389.47042, MR 3272045, 10.7900/jot.2013aug15.2007 |
Reference:
|
[10] Jiang, C., Dong, X., Zhou, Z.: Complex symmetric Toeplitz operators on the unit polydisk and the unit ball.Acta Math. Sci., Ser. B, Engl. Ed. 40 (2020), 35-44. MR 4070746, 10.1007/s10473-020-0103-2 |
Reference:
|
[11] Jiang, C., Zhou, Z.-H., Dong, X.-T.: Commutator and semicommutator of two monomial-type Toeplitz operators on the unit polydisk.Complex Anal. Oper. Theory 13 (2019), 2095-2121. Zbl 07081947, MR 3979700, 10.1007/s11785-017-0730-0 |
Reference:
|
[12] Ko, E., Lee, J. E.: On complex symmetric Toeplitz operators.J. Math. Anal. Appl. 434 (2016), 20-34. Zbl 1347.47019, MR 3404546, 10.1016/j.jmaa.2015.09.004 |
Reference:
|
[13] Li, A., Liu, Y., Chen, Y.: Complex symmetric Toeplitz operators on the Dirichlet space.J. Math. Anal. Appl. 487 (2020), Article ID 123998, 12 pages. Zbl 1435.47041, MR 4074195, 10.1016/j.jmaa.2020.123998 |
Reference:
|
[14] Li, R., Yang, Y., Lu, Y.: A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces.J. Math. Anal. Appl. 489 (2020), Article ID 124173, 11 pages. Zbl 07205245, MR 4093056, 10.1016/j.jmaa.2020.124173 |
Reference:
|
[15] Noor, S. W.: Complex symmetry of Toeplitz operators with continuous symbols.Arch. Math. 109 (2017), 455-460. Zbl 06798496, MR 3710765, 10.1007/s00013-017-1101-9 |
Reference:
|
[16] Zhu, S., Li, C. G.: Complex symmetric weighted shifts.Trans. Am. Math. Soc. 365 (2013), 511-530. Zbl 1282.47045, MR 2984066, 10.1090/S0002-9947-2012-05642-X |
Reference:
|
[17] Zhu, S., Li, C. G., Ji, Y. Q.: The class of complex symmetric operators is not norm closed.Proc. Am. Math. Soc. 140 (2012), 1705-1708. Zbl 1251.47004, MR 2869154, 10.1090/S0002-9939-2011-11345-5 |
. |