Title:
|
(Generalized) filter properties of the amalgamated algebra (English) |
Author:
|
Azimi, Yusof |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
133-140 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring. (English) |
Keyword:
|
amalgamated algebra |
Keyword:
|
Cohen-Macaulay ring |
Keyword:
|
$f$-ring |
Keyword:
|
generalized $f$-ring |
MSC:
|
13A15 |
MSC:
|
13C14 |
MSC:
|
13C15 |
MSC:
|
13E05 |
MSC:
|
13H10 |
idZBL:
|
Zbl 07584085 |
idMR:
|
MR4483048 |
DOI:
|
10.5817/AM2022-3-133 |
. |
Date available:
|
2022-09-01T10:15:40Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150658 |
. |
Reference:
|
[1] Anderson, D.D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3–56. MR 2462381, 10.1216/JCA-2009-1-1-3 |
Reference:
|
[2] Azimi, Y.: Linkage property under the amalgamated construction.Comm. Algebra 49 (2021), 3743–3747. MR 4290107, 10.1080/00927872.2021.1905823 |
Reference:
|
[3] Azimi, Y.: Constructing (non-)Catenarian rings.J. Algebra 597 (2022), 266–274. MR 4406398, 10.1016/j.jalgebra.2021.12.015 |
Reference:
|
[4] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulay properties under the amalgamated construction.J. Commut. Algebra 10 (4) (2018), 457–474. MR 3892143, 10.1216/JCA-2018-10-4-457 |
Reference:
|
[5] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulayness of amalgamated algebras.Algebr. Represent. Theory 23 (2019), 275–280. MR 4097315, 10.1007/s10468-018-09847-3 |
Reference:
|
[6] Azimi, Y., Sahandi, P., Shirmohammadi, N.: Prüfer conditions under the amalgamated construction.Comm. Algebra 47 (2019), 2251–2261. MR 3977735, 10.1080/00927872.2018.1534120 |
Reference:
|
[7] Brodmann, M.P., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Stud. Adv. Math., vol. 136, Cambridge University Press, 2013. MR 3014449 |
Reference:
|
[8] Bruns, W., Herzog, J.: Cohen-Macaulay rings.Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, 1998, Rev. ed. MR 1251956 |
Reference:
|
[9] Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln.Math. Nachr. 85 (1978), 57–73. MR 0517641 |
Reference:
|
[10] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco,, 2008, W. de Gruyter Publisher, Berlin, 2009, pp. 155–172. MR 2606283 |
Reference:
|
[11] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633–1641. MR 2593689, 10.1016/j.jpaa.2009.12.008 |
Reference:
|
[12] D’Anna, M., Finocchiaro, C.A., Fontana, M.: New algebraic properties of an amalgamated algebra along an ideal.Comm. Algebra 44 (2016), 1836–1851. MR 3490651, 10.1080/00927872.2015.1033628 |
Reference:
|
[13] D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: the basic properties.J. Algebra Appl. 6 (3) (2007), 443–459. MR 2337762, 10.1142/S0219498807002326 |
Reference:
|
[14] Lü, R., Tang, Z.: The F-depth of an ideal on a module.Proc. Amer. Math. Soc. 130 (7) (2002), 1905–1912. MR 1896021, 10.1090/S0002-9939-01-06269-4 |
Reference:
|
[15] Melkersson, L.: Some applications of a criterion for Artinianness of a module.J. Pure Appl. Algebra 101 (1995), 291–303. MR 1348571, 10.1016/0022-4049(94)00059-R |
Reference:
|
[16] Nagata, M.: Local Rings.Interscience, New York, 1962. MR 0155856 |
Reference:
|
[17] Nhan, L.T.: On generalized regular sequences and the finiteness for associated primes of local cohomology modules.Comm. Algebra 33 (2005), 793–806. MR 2128412, 10.1081/AGB-200051137 |
Reference:
|
[18] Nhan, L.T., Marcel, M.: Generalized f-modules and the associated primes of local cohomology modules.Comm. Algebra 34 (2006), 863–878. MR 2208103, 10.1080/00927870500441676 |
Reference:
|
[19] Sahandi, P., Shirmohammadi, N.: Notes on amalgamated duplication of a ring along an ideal.Bull. Iranian Math. Soc. 41 (2015), 749–757. MR 3359900 |
Reference:
|
[20] Sahandi, P., Shirmohammadi, N., Sohrabi, S.: Cohen-Macaulay and Gorenstein properties under the amalgamated construction.Comm. Algebra 44 (2016), 1096–1109. MR 3463131, 10.1080/00927872.2014.999928 |
Reference:
|
[21] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications.Berlin: WEB Deutscher Verlag der Wissenschaften, 1986. MR 0873945 |
. |