Previous |  Up |  Next


polynomials; integral inequalities; complex domain
Let $P(z)=\sum _{\nu =0}^{n}a_{\nu }z^{\nu }$ be a polynomial of degree at most $n$ which does not vanish in the disk $|z|<1$, then for $1\le p<\infty $ and $R>1$, Boas and Rahman proved \[\left\Vert P(Rz)\right\Vert _{p}\le \big (\left\Vert R^{n}+z\right\Vert_{p}/\left\Vert1+z\right\Vert_{p}\big )\left\Vert P\right\Vert _{p}.\] In this paper, we improve the above inequality for $0\le p < \infty $ by involving some of the coefficients of the polynomial $P(z)$. Analogous result for the class of polynomials $P(z)$ having no zero in $|z|>1$ is also given.
[1] Ankeny, N.C., Rivilin, T.J.: On a theorem of S. Bernstein. Pacific J. Math. 5 (1955), 849–852. MR 0076020
[2] Arestov, V.: On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv 18 (1982), 1–17. DOI 10.1070/IM1982v018n01ABEH001375 | MR 0607574
[3] Aziz, A.: Integral mean estimates for polynomials with restricted zeros. J. Approx. Theory 55 (1988), 232–239. DOI 10.1016/0021-9045(88)90089-5 | MR 0965219
[4] Boas, R.P., Rahman, Q.I.: $L^p$ inequalities for polynomials and entire function. Arch. Rational Mech. Anal. 11 (1962), 34–39. DOI 10.1007/BF00253927 | MR 0158994
[5] Pólya, G., Szegö, G.: Aufgaben and Lehrsätze aus der Analysis. Springer-Verlag, Berlin, 1925. MR 0015435
[6] Rahman, Q.I., Schmeisser, G.: Analytic theory of polynomials. Oxford University Press, 1922. MR 1954841
[7] Rahman, Q.I., Schmeisser, G.: $L^{p}$ inequalities for polynomials. J. Approx. Theory 53 (1988), 26–32. DOI 10.1016/0021-9045(88)90073-1 | MR 0937140
[8] Royden, H.L.: Real Analysis. Macmillan Pub. Co., Inc., New York, 1968. MR 0151555
[9] Turán, P.: Über die Ableitung von Polynomen. Compositio Math. 7 (1939), 89–95. MR 0000228
Partner of
EuDML logo