Previous |  Up |  Next

Article

Title: $L_{p}$ inequalities for the growth of polynomials with restricted zeros (English)
Author: Rather, Nisar A.
Author: Gulzar, Suhail
Author: Bhat, Aijaz A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 159-167
Summary lang: English
.
Category: math
.
Summary: Let $P(z)=\sum _{\nu =0}^{n}a_{\nu }z^{\nu }$ be a polynomial of degree at most $n$ which does not vanish in the disk $|z|<1$, then for $1\le p<\infty $ and $R>1$, Boas and Rahman proved \[\left\Vert P(Rz)\right\Vert _{p}\le \big (\left\Vert R^{n}+z\right\Vert_{p}/\left\Vert1+z\right\Vert_{p}\big )\left\Vert P\right\Vert _{p}.\] In this paper, we improve the above inequality for $0\le p < \infty $ by involving some of the coefficients of the polynomial $P(z)$. Analogous result for the class of polynomials $P(z)$ having no zero in $|z|>1$ is also given. (English)
Keyword: polynomials
Keyword: integral inequalities
Keyword: complex domain
MSC: 26D10
MSC: 30C15
MSC: 41A17
idZBL: Zbl 07584087
idMR: MR4483050
DOI: 10.5817/AM2022-3-159
.
Date available: 2022-09-01T10:17:56Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150661
.
Reference: [1] Ankeny, N.C., Rivilin, T.J.: On a theorem of S. Bernstein.Pacific J. Math. 5 (1955), 849–852. MR 0076020
Reference: [2] Arestov, V.: On integral inequalities for trigonometric polynomials and their derivatives.Math. USSR-Izv 18 (1982), 1–17. MR 0607574, 10.1070/IM1982v018n01ABEH001375
Reference: [3] Aziz, A.: Integral mean estimates for polynomials with restricted zeros.J. Approx. Theory 55 (1988), 232–239. MR 0965219, 10.1016/0021-9045(88)90089-5
Reference: [4] Boas, R.P., Rahman, Q.I.: $L^p$ inequalities for polynomials and entire function.Arch. Rational Mech. Anal. 11 (1962), 34–39. MR 0158994, 10.1007/BF00253927
Reference: [5] Pólya, G., Szegö, G.: Aufgaben and Lehrsätze aus der Analysis.Springer-Verlag, Berlin, 1925. MR 0015435
Reference: [6] Rahman, Q.I., Schmeisser, G.: Analytic theory of polynomials.Oxford University Press, 1922. MR 1954841
Reference: [7] Rahman, Q.I., Schmeisser, G.: $L^{p}$ inequalities for polynomials.J. Approx. Theory 53 (1988), 26–32. MR 0937140, 10.1016/0021-9045(88)90073-1
Reference: [8] Royden, H.L.: Real Analysis.Macmillan Pub. Co., Inc., New York, 1968. MR 0151555
Reference: [9] Turán, P.: Über die Ableitung von Polynomen.Compositio Math. 7 (1939), 89–95. MR 0000228
.

Files

Files Size Format View
ArchMathRetro_058-2022-3_3.pdf 433.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo