Title:
|
A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form (English) |
Author:
|
de Lima, Henrique Fernandes |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
169-175 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3]. (English) |
Keyword:
|
Lorentzian space forms |
Keyword:
|
complete spacelike hypersurfaces |
Keyword:
|
polynomial volume growth |
Keyword:
|
support functions |
MSC:
|
53C42 |
MSC:
|
53C50 |
idZBL:
|
Zbl 07584088 |
idMR:
|
MR4483051 |
DOI:
|
10.5817/AM2022-3-169 |
. |
Date available:
|
2022-09-01T10:19:28Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150662 |
. |
Reference:
|
[1] Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space.Tokyo J. Math. 24 (2001), 107–112. MR 1844421, 10.3836/tjm/1255958315 |
Reference:
|
[2] Alías, L.J., Brasil Jr., A., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres.J. Geom. Anal. 18 (2008), 687–703. MR 2420759, 10.1007/s12220-008-9029-8 |
Reference:
|
[3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications.Ann. Mat. Pura Appl. 200 (2021), 1637–1650. MR 4278219 |
Reference:
|
[4] Alías, L.J., Pastor, J.A.: Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space.J. Geom. Phys. 28 (1998), 85–93. MR 1653134, 10.1016/S0393-0440(98)00014-X |
Reference:
|
[5] Aquino, C.P., de Lima, H.F.: On the Gauss map of complete CMC hypersurfaces in the hyperbolic space.J. Math. Anal. Appl. 386 (2012), 862–869. MR 2834793, 10.1016/j.jmaa.2011.08.046 |
Reference:
|
[6] Aquino, C.P., de Lima, H.F.: On the geometry of horospheres.Comment. Math. Helv. 89 (2014), 617–629. MR 3260844, 10.4171/CMH/329 |
Reference:
|
[7] Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces.Math. Ann. 360 (2014), 555–569. MR 3273637, 10.1007/s00208-014-1049-z |
Reference:
|
[8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: On the quadric CMC spacelike hypersurfaces in Lorentzian space forms.Colloq. Math. 145 (2016), 89–98. MR 3514262 |
Reference:
|
[9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space.Geom. Dedicata 174 (2015), 13–23. MR 3303038, 10.1007/s10711-014-0002-3 |
Reference:
|
[10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry.CRC Press, New York, 1996, Second Edition. MR 1384756 |
Reference:
|
[11] Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension.Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. MR 2659235, 10.1088/0264-9381/27/15/152002 |
Reference:
|
[12] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime.Cambridge University Press, London-New York, 1973. MR 0424186 |
Reference:
|
[13] Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes.Math. Ann. 314 (1999), 529–553. MR 1704548, 10.1007/s002080050306 |
Reference:
|
[14] O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity.Academic Press, New York, 1983. MR 0719023 |
Reference:
|
[15] Penrose, R.: Gravitational collapse and space-time singularities.Phys. Rev. Lett. 14 (1965), 57–59. MR 0172678, 10.1103/PhysRevLett.14.57 |
Reference:
|
[16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions.Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316. |
. |