Previous |  Up |  Next

Article

Title: A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form (English)
Author: de Lima, Henrique Fernandes
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 169-175
Summary lang: English
.
Category: math
.
Summary: We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3]. (English)
Keyword: Lorentzian space forms
Keyword: complete spacelike hypersurfaces
Keyword: polynomial volume growth
Keyword: support functions
MSC: 53C42
MSC: 53C50
idZBL: Zbl 07584088
idMR: MR4483051
DOI: 10.5817/AM2022-3-169
.
Date available: 2022-09-01T10:19:28Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150662
.
Reference: [1] Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space.Tokyo J. Math. 24 (2001), 107–112. MR 1844421, 10.3836/tjm/1255958315
Reference: [2] Alías, L.J., Brasil Jr., A., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres.J. Geom. Anal. 18 (2008), 687–703. MR 2420759, 10.1007/s12220-008-9029-8
Reference: [3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications.Ann. Mat. Pura Appl. 200 (2021), 1637–1650. MR 4278219
Reference: [4] Alías, L.J., Pastor, J.A.: Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space.J. Geom. Phys. 28 (1998), 85–93. MR 1653134, 10.1016/S0393-0440(98)00014-X
Reference: [5] Aquino, C.P., de Lima, H.F.: On the Gauss map of complete CMC hypersurfaces in the hyperbolic space.J. Math. Anal. Appl. 386 (2012), 862–869. MR 2834793, 10.1016/j.jmaa.2011.08.046
Reference: [6] Aquino, C.P., de Lima, H.F.: On the geometry of horospheres.Comment. Math. Helv. 89 (2014), 617–629. MR 3260844, 10.4171/CMH/329
Reference: [7] Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces.Math. Ann. 360 (2014), 555–569. MR 3273637, 10.1007/s00208-014-1049-z
Reference: [8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: On the quadric CMC spacelike hypersurfaces in Lorentzian space forms.Colloq. Math. 145 (2016), 89–98. MR 3514262
Reference: [9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space.Geom. Dedicata 174 (2015), 13–23. MR 3303038, 10.1007/s10711-014-0002-3
Reference: [10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry.CRC Press, New York, 1996, Second Edition. MR 1384756
Reference: [11] Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension.Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. MR 2659235, 10.1088/0264-9381/27/15/152002
Reference: [12] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime.Cambridge University Press, London-New York, 1973. MR 0424186
Reference: [13] Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes.Math. Ann. 314 (1999), 529–553. MR 1704548, 10.1007/s002080050306
Reference: [14] O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity.Academic Press, New York, 1983. MR 0719023
Reference: [15] Penrose, R.: Gravitational collapse and space-time singularities.Phys. Rev. Lett. 14 (1965), 57–59. MR 0172678, 10.1103/PhysRevLett.14.57
Reference: [16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions.Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316.
.

Files

Files Size Format View
ArchMathRetro_058-2022-3_4.pdf 378.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo