[1] Baishya, K. K., Biswas, A.: 
Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. 
DOI 10.31926/but.mif.2019.12.61.2.4 | 
MR 4059157 
[2] Biswas, A., Baishya, K. K.: 
A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds. Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. 
MR 4089056 
[4] Chaubey, S. K., Ojha, R. H.: 
On the $m$-projective curvature tensor of a Kenmotsu manifold. Differ. Geom. Dyn. Syst. 12 (2010), 52-60. 
MR 2606546 | 
Zbl 1200.53028 
[5] Chaubey, S. K., Prakash, S., Nivas, R.: 
Some properties of $m$-projective curvature tensor in Kenmotsu manifolds. Bull. Math. Anal. Appl. 4 (2012), 48-56. 
MR 2989709 | 
Zbl 1314.53053 
[6] Das, A., Mandal, A.: 
Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection. Aligarh Bull. Math. 39 (2020), 47-61. 
MR 4380665 
[7] De, U. C., Shaikh, A. A.: 
Complex Manifolds and Contact Manifolds. Narosa Publishing House, New Delhi (2009). 
MR 2934086 | 
Zbl 1208.53001 
[10] Karmakar, P., Bhattacharyya, A.: Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds. Bull. Calcutta Math. Soc. 112 (2020), 95-108.
[11] Mandal, A., Das, A.: 
On $M$-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection. Adv. Math., Sci. J. 9 (2020), 8929-8940. 
DOI 10.37418/amsj.9.10.115 
[13] Mandal, A., Das, A.: 
Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection. Bull. Cal. Math. Soc. 112 (2020), 431-450. 
MR 2676120 
[15] Nagaraja, H. G., Somashekhara, G.: 
On pseudo projective curvature tensor in Sasakian manifolds. Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. 
MR 2837958 | 
Zbl 1252.53058 
[16] Narain, D., Prakash, A., Prasad, B.: 
A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. 
MR 2562248 | 
Zbl 1199.53040 
[18] Ojha, R. H.: 
A note on the $M$-projective curvature tensor. Indian J. Pure Appl. Math. 8 (1977), 1531-1534. 
MR 0548666 | 
Zbl 0426.53022 
[19] Ojha, R. H.: 
$M$-projectively flat Sasakian manifolds. Indian J. Pure Appl. Math. 17 (1986), 481-484. 
MR 0840755 | 
Zbl 0631.53038 
[20] Pandey, H. B., Kumar, A.: 
Anti-invariant submanifolds of almost para-contact manifolds. Indian J. Pure Appl. Math. 16 (1985), 586-590. 
MR 0814389 | 
Zbl 0585.53015 
[21] Pokhariyal, G. P., Mishra, R. S.: 
Curvature tensors and their relativistic significance. II. Yokohama Math. J. 19 (1971), 97-103. 
MR 0426797 | 
Zbl 0229.53026 
[23] Prasad, B.: 
A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc. 94 (2002), 163-166. 
MR 1947297 | 
Zbl 1028.53016 
[25] Shukla, S. S., Singh, D. D.: 
On $(\epsilon)$-trans-Sasakian manifolds. Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. 
MR 2770033 | 
Zbl 1227.53045 
[26] Singh, J. P.: 
On $m$-projectively flat almost pseudo Ricci symmetric manifolds. Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. 
MR 3702446 | 
Zbl 1399.53059 
[28] Tripathi, M. M., Gupta, P.: 
On $\tau$-curvature tensor in $K$-contact and Sasakian manifolds. Int. Electron. J. Geom. 4 (2011), 32-47. 
MR 2801462 | 
Zbl 1221.53079