Previous |  Up |  Next

Article

Title: Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold (English)
Author: Karmakar, Payel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 419-434
Summary lang: English
.
Category: math
.
Summary: The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily. (English)
Keyword: anti-invariant submanifold
Keyword: trans-Sasakian manifold
Keyword: Zamkovoy connection
Keyword: $\eta $-Einstein manifold
Keyword: Ricci curvature tensor
Keyword: concircular curvature tensor
Keyword: projective curvature tensor
Keyword: $M$-projective curvature tensor
Keyword: pseudo projective curvature tensor
Keyword: Ricci soliton\looseness -1
MSC: 53C05
MSC: 53C15
MSC: 53C20
MSC: 53C25
MSC: 53C40
idZBL: Zbl 07584134
idMR: MR4482315
DOI: 10.21136/MB.2021.0058-21
.
Date available: 2022-09-05T09:42:09Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151017
.
Reference: [1] Baishya, K. K., Biswas, A.: Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection.Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. MR 4059157, 10.31926/but.mif.2019.12.61.2.4
Reference: [2] Biswas, A., Baishya, K. K.: A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds.Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. MR 4089056
Reference: [3] Blaga, A. M.: Canonical connections on para-Kenmotsu manifolds.Novi Sad J. Math. 45 (2015), 131-142. Zbl 06749324, MR 3432562, 10.30755/NSJOM.2014.050
Reference: [4] Chaubey, S. K., Ojha, R. H.: On the $m$-projective curvature tensor of a Kenmotsu manifold.Differ. Geom. Dyn. Syst. 12 (2010), 52-60. Zbl 1200.53028, MR 2606546
Reference: [5] Chaubey, S. K., Prakash, S., Nivas, R.: Some properties of $m$-projective curvature tensor in Kenmotsu manifolds.Bull. Math. Anal. Appl. 4 (2012), 48-56. Zbl 1314.53053, MR 2989709
Reference: [6] Das, A., Mandal, A.: Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection.Aligarh Bull. Math. 39 (2020), 47-61. MR 4380665
Reference: [7] De, U. C., Shaikh, A. A.: Complex Manifolds and Contact Manifolds.Narosa Publishing House, New Delhi (2009). Zbl 1208.53001, MR 2934086
Reference: [8] Hamilton, R. S.: Three-manifolds with positive Ricci curvature.J. Differ. Geom. 17 (1982), 255-306. Zbl 0504.53034, MR 0664497, 10.4310/jdg/1214436922
Reference: [9] Hamilton, R. S.: The Ricci flow on surfaces.Mathematics and General Relativity Contemporary Mathematics 71. AMS, Providence (1988), 237-262. Zbl 0663.53031, MR 0954419, 10.1090/conm/071
Reference: [10] Karmakar, P., Bhattacharyya, A.: Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds.Bull. Calcutta Math. Soc. 112 (2020), 95-108.
Reference: [11] Mandal, A., Das, A.: On $M$-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection.Adv. Math., Sci. J. 9 (2020), 8929-8940. 10.37418/amsj.9.10.115
Reference: [12] Mandal, A., Das, A.: Projective curvature tensor with respect to Zamkovoy connection in Lorentzian para-Sasakian manifolds.J. Indones. Math. Soc. 26 (2020), 369-379. Zbl 1454.53017, MR 4188662, 10.22342/jims.26.3.928.369-379
Reference: [13] Mandal, A., Das, A.: Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection.Bull. Cal. Math. Soc. 112 (2020), 431-450. MR 2676120
Reference: [14] Mandal, A., Das, A.: LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic curvature tensor.J. Indones. Math. Soc. 27 (2021), 137-149. MR 4294370, 10.22342/jims.27.2.960.137-149
Reference: [15] Nagaraja, H. G., Somashekhara, G.: On pseudo projective curvature tensor in Sasakian manifolds.Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. Zbl 1252.53058, MR 2837958
Reference: [16] Narain, D., Prakash, A., Prasad, B.: A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. Zbl 1199.53040, MR 2562248
Reference: [17] Ojha, R. H.: On Sasakian manifold.Kyungpook Math. J. 13 (1973), 211-215. Zbl 0289.53036, MR 0339011
Reference: [18] Ojha, R. H.: A note on the $M$-projective curvature tensor.Indian J. Pure Appl. Math. 8 (1977), 1531-1534. Zbl 0426.53022, MR 0548666
Reference: [19] Ojha, R. H.: $M$-projectively flat Sasakian manifolds.Indian J. Pure Appl. Math. 17 (1986), 481-484. Zbl 0631.53038, MR 0840755
Reference: [20] Pandey, H. B., Kumar, A.: Anti-invariant submanifolds of almost para-contact manifolds.Indian J. Pure Appl. Math. 16 (1985), 586-590. Zbl 0585.53015, MR 0814389
Reference: [21] Pokhariyal, G. P., Mishra, R. S.: Curvature tensors and their relativistic significance. II.Yokohama Math. J. 19 (1971), 97-103. Zbl 0229.53026, MR 0426797
Reference: [22] Prakasha, D. G., Mirji, K.: On the $M$-projective curvature tensor of a $(k,\mu)$-contact metric manifold.Facta Univ., Ser. Math. Inf. 32 (2017), 117-128. Zbl 07342514, MR 3633228, 10.22190/FUMI1701117P
Reference: [23] Prasad, B.: A pseudo projective curvature tensor on a Riemannian manifold.Bull. Calcutta Math. Soc. 94 (2002), 163-166. Zbl 1028.53016, MR 1947297
Reference: [24] Shaikh, A. A., Kundu, H.: On equivalency of various geometric structures.J. Geom. 105 (2014), 139-165. Zbl 1297.53026, MR 3176344, 10.1007/s00022-013-0200-4
Reference: [25] Shukla, S. S., Singh, D. D.: On $(\epsilon)$-trans-Sasakian manifolds.Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. Zbl 1227.53045, MR 2770033
Reference: [26] Singh, J. P.: On $m$-projectively flat almost pseudo Ricci symmetric manifolds.Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. Zbl 1399.53059, MR 3702446
Reference: [27] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric.Tohoku Math. J., II. Ser. 21 (1969), 271-290. Zbl 0187.43601, MR 0248698, 10.2748/tmj/1178242996
Reference: [28] Tripathi, M. M., Gupta, P.: On $\tau$-curvature tensor in $K$-contact and Sasakian manifolds.Int. Electron. J. Geom. 4 (2011), 32-47. Zbl 1221.53079, MR 2801462
Reference: [29] Yano, K.: Concircular geometry I. Concircular transformations.Proc. Acad., Tokyo 16 (1940), 195-200 \99999JFM99999 66.0888.01. MR 0003113, 10.3792/pia/1195579139
Reference: [30] Yano, K., Bochner, S.: Curvature and Betti Numbers.Annals of Mathematics Studies 32. Princeton University Press, Princeton (1953). Zbl 0051.39402, MR 0062505, 10.1515/9781400882205
Reference: [31] Yano, K., Kon, M.: Anti-invariant submanifolds of Sasakian space forms. I.Tohoku Math. J., II. Ser. 29 (1977), 9-23. Zbl 0353.53033, MR 0433356, 10.2748/tmj/1178240692
Reference: [32] Zamkovoy, S.: Canonical connections on paracontact manifolds.Ann. Global Anal. Geom. 36 (2009), 37-60. Zbl 1177.53031, MR 2520029, 10.1007/s10455-008-9147-3
.

Files

Files Size Format View
MathBohem_147-2022-3_10.pdf 253.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo