Previous |  Up |  Next

Article

Title: Dewetting dynamics of anisotropic particles: A level set numerical approach (English)
Author: Gavhale, Siddharth
Author: Švadlenka, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 5
Year: 2022
Pages: 543-571
Summary lang: English
.
Category: math
.
Summary: We extend thresholding methods for numerical realization of mean curvature flow on obstacles to the anisotropic setting where interfacial energy depends on the orientation of the interface. This type of schemes treats the interface implicitly, which supports natural implementation of topology changes, such as merging and splitting, and makes the approach attractive for applications in material science. The main tool in the new scheme are convolution kernels developed in previous studies that approximate the given anisotropy in a nonlocal way. We provide a detailed report on the numerical properties of the proposed algorithm. (English)
Keyword: interface evolution
Keyword: anisotropic energy
Keyword: weighted mean curvature
Keyword: obstacle problem
Keyword: thresholding method
Keyword: convolution kernels
Keyword: topology change
Keyword: numerical analysis
MSC: 53E10
MSC: 65K10
MSC: 74P20
idZBL: Zbl 07613012
idMR: MR4484886
DOI: 10.21136/AM.2021.0040-21
.
Date available: 2022-09-15T09:13:25Z
Last updated: 2024-11-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151024
.
Reference: [1] Bao, W., Jiang, W., Srolovitz, D. J., Wang, Y.: Stable equilibria of anisotropic particles on substrates: A generalized Winterbottom construction.SIAM J. Appl. Math. 77 (2017), 2093-2118. Zbl 1386.74059, MR 3730550, 10.1137/16M1091599
Reference: [2] Bertagnolli, M., Marchese, M., Jacucci, G.: Modeling of particles impacting on a rigid substrate under plasma spraying conditions.J. Thermal Spray Technology 4 (1995), 41-49. 10.1007/BF02648527
Reference: [3] Bonnetier, E., Bretin, E., Chambolle, A.: Consistency result for a non monotone scheme for anisotropic mean curvature flow.Interface Free Bound. 14 (2012), 1-35. Zbl 1254.35128, MR 2929124, 10.4171/IFB/272
Reference: [4] Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., Heisenberg, C.-P.: Tensionoriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly.Nature Cell Biology 15 (2013), 1405-1414. 10.1038/ncb2869
Reference: [5] Elsey, M., Esedo\={g}lu, S.: Threshold dynamics for anisotropic surface energies.Math. Comput. 87 (2018), 1721-1756 \99999DOI99999 10.1090/mcom/3268 . Zbl 1397.65156, MR 3787390, 10.1090/mcom/3268
Reference: [6] Esedo\={g}lu, S., Jacobs, M.: Convolution kernels and stability of threshold dynamics methods.SIAM J. Numer. Anal. 55 (2017), 2123-2150. Zbl 1372.65253, MR 3693605, 10.1137/16M1087552
Reference: [7] Esedo\={g}lu, S., Jacobs, M., Zhang, P.: Kernels with prescribed surface tension & mobility for threshold dynamics schemes.J. Comput. Phys. 337 (2017), 62-83. Zbl 1415.65278, MR 3623147, 10.1016/j.jcp.2017.02.023
Reference: [8] Esedo\={g}lu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions.Commun. Pure Appl. Math. 68 (2015), 808-864. Zbl 1334.82072, MR 3333842, 10.1002/cpa.21527
Reference: [9] Huang, J., Kim, F., Tao, A. R., Connor, S., Yang, P.: Spontaneous formation of nanoparticle stripe patterns through dewetting.Nature Materials 4 (2005), 896-900. 10.1038/nmat1517
Reference: [10] Ishii, H., Pires, G. E., Souganidis, P. E.: Threshold dynamics type approximation schemes for propagating fronts.J. Math. Soc. Japan 51 (1999), 267-308. Zbl 0935.53006, MR 1674750, 10.2969/jmsj/05120267
Reference: [11] Jiang, W., Bao, W., Thompson, C. V., Srolovitz, D. J.: Phase field approach for simulating solid-state dewetting problems.Acta Mater. 60 (2012), 5578-5592. 10.1016/j.actamat.2012.07.002
Reference: [12] Laux, T., Otto, F.: Convergence of the thresholding scheme for multi-phase mean-curvature flow.Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 129, 74 pages. Zbl 1388.35121, MR 3556529, 10.1007/s00526-016-1053-0
Reference: [13] Merriman, B., Bence, J. K., Osher, S. J.: Motion of multiple junctions: A level set approach.J. Comput. Phys. 112 (1994), 334-363. Zbl 0805.65090, MR 1277282, 10.1006/jcph.1994.1105
Reference: [14] Misiats, O., Yip, N. Kwan: Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature.Discrete Contin. Dyn. Syst. 36 (2016), 6379-6411. Zbl 1353.65097, MR 3543592, 10.3934/dcds.2016076
Reference: [15] Ruuth, S. J., Merriman, B.: Convolution-generated motion and generalized Huygens' principles for interface motion.SIAM J. Appl. Math. 60 (2000), 868-890. Zbl 0958.65021, MR 1740854, 10.1137/S003613999833397X
Reference: [16] Ševčovič, D., Yazaki, S.: Evolution of plane curves with a curvature adjusted tangential velocity.Japan J. Ind. Appl. Math. 28 (2011), 413-442. Zbl 1291.35109, MR 2846183, 10.1007/s13160-011-0046-9
Reference: [17] Thompson, C. V.: Solid-state dewetting of thin films.Annual Review Materials Research 42 (2012), 399-434. 10.1146/annurev-matsci-070511-155048
Reference: [18] Wang, Y., Jiang, W., Bao, W., Srolovitz, D. J.: Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies.Phys. Rev. B 91 (2015), Article ID 045303. 10.1103/PhysRevB.91.045303
Reference: [19] Winterbottom, W. L.: Equilibrium shape of a small particle in contact with a foreign substrate.Acta Metallurgica 15 (1967), 303-310. 10.1016/0001-6160(67)90206-4
Reference: [20] Xu, X., Wang, D., Wang, X.-P.: An efficient threshold dynamics method for wetting on rough surfaces.J. Comput. Phys. 330 (2017), 510-528. Zbl 1378.76087, MR 3581477, 10.1016/j.jcp.2016.11.008
Reference: [21] Yagisita, H.: Non-uniqueness of self-similar shrinking curves for an anisotropic curvature flow.Calc. Var. Partial Differ. Equ. 26 (2006), 49-55. Zbl 1116.53041, MR 2217482, 10.1007/s00526-005-0357-2
.

Files

Files Size Format View
AplMat_67-2022-5_1.pdf 726.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo