Title:
|
Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition (English) |
Author:
|
Jo, Yong-Hyok |
Author:
|
Ri, Myong-Hwan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
67 |
Issue:
|
5 |
Year:
|
2022 |
Pages:
|
573-592 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe's method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric. (English) |
Keyword:
|
Rothe's method |
Keyword:
|
nonlocal boundary condition |
Keyword:
|
semilinear parabolic equation |
Keyword:
|
inverse source problem |
MSC:
|
35K58 |
MSC:
|
35R30 |
MSC:
|
65M20 |
idZBL:
|
Zbl 07613013 |
idMR:
|
MR4484887 |
DOI:
|
10.21136/AM.2021.0029-21 |
. |
Date available:
|
2022-09-15T09:14:42Z |
Last updated:
|
2024-11-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151026 |
. |
Reference:
|
[1] Azizbayov, E. I.: The nonlocal inverse problem of the identification of the lowest coefficient and the right-hand side in a second-order parabolic equation with integral conditions.Bound. Value Probl. 2019 (2019), Article ID 11, 19 pages. MR 3900856, 10.1186/s13661-019-1126-z |
Reference:
|
[2] Bahuguna, D., Raghavendra, V.: Application of Rothe's method to nonlinear integrodifferential equations in Hilbert spaces.Nonlinear Anal., Theory Methods Appl. 23 (1994), 75-81. Zbl 0810.34054, MR 1288499, 10.1016/0362-546X(94)90252-6 |
Reference:
|
[3] Buda, V., Chegis, R., Sapagovas, M.: A model of multiple diffusion from a limited source.Differ. Uravn. Primen. 38 (1986), 9-14 Russian. Zbl 0621.76097 |
Reference:
|
[4] Carl, S., Lakshmikantham, V.: Generalized quasilinearization method for reaction-diffusion equations under nonlinear and nonlocal flux conditions.J. Math. Anal. Appl. 271 (2002), 182-205. Zbl 1010.65041, MR 1923755, 10.1016/S0022-247X(02)00114-2 |
Reference:
|
[5] Chaoui, A., Guezane-Lakoud, A.: Solution to an integrodifferential equation with integral condition.Appl. Math. Comput. 266 (2015), 903-908. Zbl 1410.65354, MR 3377607, 10.1016/j.amc.2015.06.004 |
Reference:
|
[6] Cui, M. R.: Convergence analysis of compact difference schemes for diffusion equation with nonlocal boundary conditions.Appl. Math. Comput. 260 (2015), 227-241. Zbl 1410.65304, MR 3343264, 10.1016/j.amc.2015.03.039 |
Reference:
|
[7] Daoud, D. S.: Determination of the source parameter in a heat equation with a non-local boundary condition.J. Comput. Appl. Math. 221 (2008), 261-272. Zbl 1152.65096, MR 2458768, 10.1016/j.cam.2007.10.060 |
Reference:
|
[8] Day, W. A.: A decreasing property of solutions of parabolic equations with applications to thermoelasticity.Q. Appl. Math. 40 (1983), 468-475. Zbl 0514.35038, MR 0693879, 10.1090/qam/693879 |
Reference:
|
[9] Staelen, R. H. De, Slodička, M.: Reconstruction of a convolution kernel in a semilinear parabolic problem based on a global measurement.Nonlinear Anal., Theory Methods Appl., Ser. A 112 (2015), 43-57. Zbl 1302.35435, MR 3274282, 10.1016/j.na.2014.09.002 |
Reference:
|
[10] Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S.: An integral constrained parabolic problem with applications in thermochronology.Comput. Math. Appl. 71 (2016), 2301-2312. Zbl 1443.35053, MR 3501321, 10.1016/j.camwa.2016.01.017 |
Reference:
|
[11] Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S.: An inverse diffusion coefficient problem for a parabolic equation with integral constraint.Int. J. Numer. Anal. Model. 15 (2018), 552-563. Zbl 1395.35103, MR 3789578 |
Reference:
|
[12] Kačur, J.: Method of Rothe in Evolution Equations.Teubner Texte zur Mathematik 80. Teubner, Leipzig (1985). Zbl 0582.65084, MR 0834176 |
Reference:
|
[13] Kozhanov, A. I.: On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations.Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 30 (2004), 63-69 Russian. MR 2766545, 10.14498/vsgtu308 |
Reference:
|
[14] Merazga, N., Bouziani, A.: On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space.Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 604-623. Zbl 1105.35044, MR 2274872, 10.1016/j.na.2005.12.005 |
Reference:
|
[15] Nečas, J.: Direct Methods in the Theory of Elliptic Equations.Springer Monographs in Mathematics. Springer, Berlin (2012). Zbl 1246.35005, MR 3014461, 10.1007/978-3-642-10455-8 |
Reference:
|
[16] Prilepko, A. I., Orlovsky, D. G., Vasin, I. A.: Methods for Solving Inverse Problems in Mathematical Physics.Pure and Applied Mathematics, Marcel Dekker 231. Marcel Dekker, New York (2000). Zbl 0947.35173, MR 1748236, 10.1201/9781482292985 |
Reference:
|
[17] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications (East European Series) 4. Reidel Publishing, Dordrecht (1982). Zbl 0505.65029, MR 0689712 |
Reference:
|
[18] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49. American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252, 10.1090/surv/049 |
Reference:
|
[19] Slodička, M.: Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates.Appl. Math., Praha 48 (2003), 49-66. Zbl 1099.65081, MR 1954503, 10.1023/A:1022954920827 |
Reference:
|
[20] Slodička, M.: Semilinear parabolic problems with nonlocal Dirichlet boundary conditions.Inverse Probl. Sci. Eng. 19 (2011), 705-716. Zbl 1239.65059, MR 2819541, 10.1080/17415977.2011.579608 |
Reference:
|
[21] Bockstal, K. Van, Staelen, R. H. De, Slodička, M.: Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory.J. Comput. Appl. Math. 289 (2015), 196-207. Zbl 1319.35305, MR 3350770, 10.1016/j.cam.2015.02.019 |
Reference:
|
[22] Yin, H.-M.: On a class of parabolic equations with nonlocal boundary conditions.J. Math. Anal. Appl. 294 (2004), 712-728. Zbl 1060.35057, MR 2061353, 10.1016/j.jmaa.2004.03.021 |
. |