Previous |  Up |  Next

Article

Title: Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition (English)
Author: Jo, Yong-Hyok
Author: Ri, Myong-Hwan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 5
Year: 2022
Pages: 573-592
Summary lang: English
.
Category: math
.
Summary: We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe's method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric. (English)
Keyword: Rothe's method
Keyword: nonlocal boundary condition
Keyword: semilinear parabolic equation
Keyword: inverse source problem
MSC: 35K58
MSC: 35R30
MSC: 65M20
idZBL: Zbl 07613013
idMR: MR4484887
DOI: 10.21136/AM.2021.0029-21
.
Date available: 2022-09-15T09:14:42Z
Last updated: 2024-11-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151026
.
Reference: [1] Azizbayov, E. I.: The nonlocal inverse problem of the identification of the lowest coefficient and the right-hand side in a second-order parabolic equation with integral conditions.Bound. Value Probl. 2019 (2019), Article ID 11, 19 pages. MR 3900856, 10.1186/s13661-019-1126-z
Reference: [2] Bahuguna, D., Raghavendra, V.: Application of Rothe's method to nonlinear integrodifferential equations in Hilbert spaces.Nonlinear Anal., Theory Methods Appl. 23 (1994), 75-81. Zbl 0810.34054, MR 1288499, 10.1016/0362-546X(94)90252-6
Reference: [3] Buda, V., Chegis, R., Sapagovas, M.: A model of multiple diffusion from a limited source.Differ. Uravn. Primen. 38 (1986), 9-14 Russian. Zbl 0621.76097
Reference: [4] Carl, S., Lakshmikantham, V.: Generalized quasilinearization method for reaction-diffusion equations under nonlinear and nonlocal flux conditions.J. Math. Anal. Appl. 271 (2002), 182-205. Zbl 1010.65041, MR 1923755, 10.1016/S0022-247X(02)00114-2
Reference: [5] Chaoui, A., Guezane-Lakoud, A.: Solution to an integrodifferential equation with integral condition.Appl. Math. Comput. 266 (2015), 903-908. Zbl 1410.65354, MR 3377607, 10.1016/j.amc.2015.06.004
Reference: [6] Cui, M. R.: Convergence analysis of compact difference schemes for diffusion equation with nonlocal boundary conditions.Appl. Math. Comput. 260 (2015), 227-241. Zbl 1410.65304, MR 3343264, 10.1016/j.amc.2015.03.039
Reference: [7] Daoud, D. S.: Determination of the source parameter in a heat equation with a non-local boundary condition.J. Comput. Appl. Math. 221 (2008), 261-272. Zbl 1152.65096, MR 2458768, 10.1016/j.cam.2007.10.060
Reference: [8] Day, W. A.: A decreasing property of solutions of parabolic equations with applications to thermoelasticity.Q. Appl. Math. 40 (1983), 468-475. Zbl 0514.35038, MR 0693879, 10.1090/qam/693879
Reference: [9] Staelen, R. H. De, Slodička, M.: Reconstruction of a convolution kernel in a semilinear parabolic problem based on a global measurement.Nonlinear Anal., Theory Methods Appl., Ser. A 112 (2015), 43-57. Zbl 1302.35435, MR 3274282, 10.1016/j.na.2014.09.002
Reference: [10] Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S.: An integral constrained parabolic problem with applications in thermochronology.Comput. Math. Appl. 71 (2016), 2301-2312. Zbl 1443.35053, MR 3501321, 10.1016/j.camwa.2016.01.017
Reference: [11] Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S.: An inverse diffusion coefficient problem for a parabolic equation with integral constraint.Int. J. Numer. Anal. Model. 15 (2018), 552-563. Zbl 1395.35103, MR 3789578
Reference: [12] Kačur, J.: Method of Rothe in Evolution Equations.Teubner Texte zur Mathematik 80. Teubner, Leipzig (1985). Zbl 0582.65084, MR 0834176
Reference: [13] Kozhanov, A. I.: On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations.Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 30 (2004), 63-69 Russian. MR 2766545, 10.14498/vsgtu308
Reference: [14] Merazga, N., Bouziani, A.: On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space.Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 604-623. Zbl 1105.35044, MR 2274872, 10.1016/j.na.2005.12.005
Reference: [15] Nečas, J.: Direct Methods in the Theory of Elliptic Equations.Springer Monographs in Mathematics. Springer, Berlin (2012). Zbl 1246.35005, MR 3014461, 10.1007/978-3-642-10455-8
Reference: [16] Prilepko, A. I., Orlovsky, D. G., Vasin, I. A.: Methods for Solving Inverse Problems in Mathematical Physics.Pure and Applied Mathematics, Marcel Dekker 231. Marcel Dekker, New York (2000). Zbl 0947.35173, MR 1748236, 10.1201/9781482292985
Reference: [17] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications (East European Series) 4. Reidel Publishing, Dordrecht (1982). Zbl 0505.65029, MR 0689712
Reference: [18] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49. American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252, 10.1090/surv/049
Reference: [19] Slodička, M.: Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates.Appl. Math., Praha 48 (2003), 49-66. Zbl 1099.65081, MR 1954503, 10.1023/A:1022954920827
Reference: [20] Slodička, M.: Semilinear parabolic problems with nonlocal Dirichlet boundary conditions.Inverse Probl. Sci. Eng. 19 (2011), 705-716. Zbl 1239.65059, MR 2819541, 10.1080/17415977.2011.579608
Reference: [21] Bockstal, K. Van, Staelen, R. H. De, Slodička, M.: Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory.J. Comput. Appl. Math. 289 (2015), 196-207. Zbl 1319.35305, MR 3350770, 10.1016/j.cam.2015.02.019
Reference: [22] Yin, H.-M.: On a class of parabolic equations with nonlocal boundary conditions.J. Math. Anal. Appl. 294 (2004), 712-728. Zbl 1060.35057, MR 2061353, 10.1016/j.jmaa.2004.03.021
.

Files

Files Size Format View
AplMat_67-2022-5_2.pdf 286.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo