Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
iterative method; absolute value equation; convergence; tensor (Kronecker) product
Summary:
We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated.  The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically. 
References:
[1] Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327 (2018), 196-207 \99999DOI99999 10.1016/j.cam.2017.06.019 . DOI 10.1016/j.cam.2017.06.019 | MR 3683155 | Zbl 1370.90297
[2] Bader, B. W., Kolda, T. G.: MATLAB Tensor Toolbox, Version 2.5. Available at https://www.tensortoolbox.org/ (2012),\99999sw99999 04185 .
[3] Bai, Z.-Z., Golub, G. H., Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24 (2003), 603-626 \99999DOI99999 10.1137/S0895479801395458 . MR 1972670 | Zbl 1036.65032
[4] Bai, Z.-Z., Yang, X.: On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 59 (2009), 2923-2936. DOI 10.1016/j.apnum.2009.06.005 | MR 2560825 | Zbl 1178.65047
[5] Beik, F. P. A., Najafi-Kalyani, M., Reichel, L.: Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations. Appl. Numer. Math. 151 (2020), 425-447. DOI 10.1016/j.apnum.2020.01.011 | MR 4055037 | Zbl 1432.65049
[6] Beik, F. P. A., Movahed, F. Saberi, Ahmadi-Asl, S.: On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numer. Linear Algebra Appl. 23 (2016), 444-466. DOI 10.1002/nla.2033 | MR 3484355 | Zbl 1413.65128
[7] Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. Appl. Numer. Math. 158 (2020), 425-438. DOI 10.1016/j.apnum.2020.08.001 | MR 4140578 | Zbl 1451.65048
[8] Dong, X., Shao, X.-H., Shen, H.-L.: A new SOR-like method for solving absolute value equations. Appl. Numer. Math. 156 (2020), 410-421. DOI 10.1016/j.apnum.2020.05.013 | MR 4103787 | Zbl 1435.65049
[9] Guo, P., Wu, S.-L., Li, C.-X.: On the SOR-like iteration method for solving absolute value equations. Appl. Math. Lett. 97 (2019), 107-113. DOI 10.1016/j.aml.2019.03.033 | MR 3957497 | Zbl 1437.65044
[10] Hashemi, B.: Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation. Appl. Math. Lett. 112 (2021), Article ID 106818, 6 pages. DOI 10.1016/j.aml.2020.106818 | MR 4162965 | Zbl 1459.15016
[11] Higham, N. J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002). DOI 10.1137/1.9780898718027 | MR 1927606 | Zbl 1011.65010
[12] Huang, B., Ma, C.: An iterative algorithm to solve the generalized Sylvester tensor equations. Linear Multilinear Algebra 68 (2020), 1175-1200. DOI 10.1080/03081087.2018.1536732 | MR 4122541 | Zbl 1453.65084
[13] Huang, B., Ma, C.: Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations. Appl. Math. Comput. 369 (2020), Article ID 124892, 16 pages. DOI 10.1016/j.amc.2019.124892 | MR 4038207 | Zbl 1433.65046
[14] Ke, Y.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. DOI 10.1016/j.aml.2019.07.021 | MR 3989672 | Zbl 1468.65049
[15] Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311 (2017), 195-202. DOI 10.1016/j.amc.2017.05.035 | MR 3658069 | Zbl 1426.65048
[16] Kolda, T. G., Bader, B. W.: Tensor decompositions and applications. SIAM Rev. 51 (2009), 455-500. DOI 10.1137/07070111X | MR 2535056 | Zbl 1173.65029
[17] Lv, C., Ma, C.: A modified CG algorithm for solving generalized coupled Sylvester tensor equations. Appl. Math. Comput. 365 (2020), Article ID 124699, 15 pages. DOI 10.1016/j.amc.2019.124699 | MR 4001115 | Zbl 1433.65055
[18] Mangasarian, O. L.: Sufficient conditions for the unsolvability and solvability of the absolute value equation. Optim. Lett. 11 (2017), 1469-1475. DOI 10.1007/s11590-017-1115-z | MR 3702953 | Zbl 1381.90058
[19] Mangasarian, O. L., Meyer, R. R.: Absolute value equations. Linear Algebra Appl. 419 (2006), 359-367 \99999DOI99999 10.1016/j.laa.2006.05.004 . MR 2277975 | Zbl 1172.15302
[20] Mansoori, A., Erfanian, M.: A dynamic model to solve the absolute value equations. J. Comput. Appl. Math. 333 (2018), 28-35 \99999DOI99999 10.1016/j.cam.2017.09.032 . MR 3739937 | Zbl 1380.65107
[21] Noor, M. A., Iqbal, J., Noor, K. I., Al-Said, E.: On an iterative method for solving absolute value equations. Optim. Lett. 6 (2012), 1027-1033 \99999DOI99999 10.1007/s11590-011-0332-0 . MR 2925637 | Zbl 1254.90149
[22] Ren, H., Wang, X., Tang, X.-B., Wang, T.: The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Comput. Math. Appl. 77 (2019), 1071-1081 \99999DOI99999 10.1016/j.camwa.2018.10.040 . MR 3913650 | Zbl 1442.65112
[23] Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8 (2014), 35-44 \99999DOI99999 10.1007/s11590-012-0560-y . MR 3152897 | Zbl 1316.90052
[24] Salkuyeh, D. K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8 (2014), 2191-2202. DOI 10.1007/s11590-014-0727-9 | MR 3279597 | Zbl 1335.90102
[25] Shams, N. N., Jahromi, A. Fakharzadeh, Beik, F. P. A.: Iterative schemes induced by block splittings for solving absolute value equations. Filomat 34 (2020), 4171-4188. DOI 10.2298/FIL2012171S | MR 4290841
[26] Wang, L.-M., Li, C.-X.: New sufficient conditions for the unique solution of a square Sylvester-like absolute value equation. Appl. Math. Lett. 116 (2021), Article ID 106966, 5 pages. DOI 10.1016/j.aml.2020.106966 | MR 4201468 | Zbl 1472.15023
[27] Wang, X., Li, X., Zhang, L.-H., Li, R.-C.: An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem. J. Sci. Comput. 79 (2019), 1608-1629 \99999DOI99999 10.1007/s10915-019-00907-4 . MR 3946470 | Zbl 1418.90265
[28] Wu, S.-L., Li, C.-X.: The unique solution of the absolute value equations. Appl. Math. Lett. 76 (2018), 195-200 \99999DOI99999 10.1016/j.aml.2017.08.012 . MR 3713516 | Zbl 1397.90381
[29] Wu, S.-L., Li, C.-X.: A note on unique solvability of the absolute value equation. Optim. Lett. 14 (2020), 1957-1960. DOI 10.1007/s11590-019-01478-x | MR 4149779 | Zbl 1460.15022
[30] Yong, L.: Iteration method for absolute value equation and applications in two-point boundary value problem of linear differential equation. J. Interdiscip. Math. 18 (2015), 355-374. DOI 10.1080/09720502.2014.996022
[31] Young, D. M.: Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. Academic Press, New York (1971),\99999DOI99999 10.1016/c2013-0-11733-3 . MR 0305568 | Zbl 0231.65034
[32] Zak, M. K., Toutounian, F.: Nested splitting conjugate gradient method for matrix equation $AXB = C$ and preconditioning. Comput. Math. Appl. 66 (2013), 269-278. DOI 10.1016/j.camwa.2013.05.004 | MR 3073338 | Zbl 1347.65078
[33] Zhang, C., Wei, Q. J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143 (2009), 391-403. DOI 10.1007/s10957-009-9557-9 | MR 2545959 | Zbl 1175.90418
Partner of
EuDML logo