Previous |  Up |  Next

Article

Title: Migrativity properties of 2-uninorms over semi-t-operators (English)
Author: Li-Jun, Ying
Author: Feng, Qin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 354-375
Summary lang: English
.
Category: math
.
Summary: In this paper, we analyze and characterize all solutions about $\alpha$-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha$-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha$-migrativity of $G$ over a semi-t-operator $F_{\mu,\nu}$ is closely related to the $\alpha$-section of $F_{\mu,\nu}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu,\nu}$. But for the other four categories, the $\alpha$-migrativity over a semi-t-operator $F_{\mu,\nu}$ is fully determined by the $\alpha$-section of $F_{\mu,\nu}$. (English)
Keyword: 2-uninorms
Keyword: uninorms
Keyword: semi-t-operators
Keyword: triangular norms
Keyword: triangular conorms
MSC: 03B52
MSC: 94D05
idZBL: Zbl 07613050
idMR: MR4494096
DOI: 10.14736/kyb-2022-3-0354
.
Date available: 2022-10-06T14:47:46Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151035
.
Reference: [1] Alsina, C., Schweizer, B., Frank, M. J.: Associative Functions: Triangular Norms and Copulas..World Scientific, 2006. MR 2222258
Reference: [2] Akella, P.: Structure of red $n$-uninorms..Fuzzy Sets Syst. 158 (2007), 1631-1651. MR 2341328,
Reference: [3] Baets, B. De: Idempotent uninorms..Eur. J. Oper. Res. 118 (1999), 631-642. Zbl 1178.03070,
Reference: [4] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practioners..Springer-Verlag, Berlin-Heidelberg 2007.
Reference: [5] Bustince, H., Baets, B. De, Fernandez, J., Mesiar, R., Montero, J.: A generalization of the migrativity property of aggregation functions..Inf. Sci. 191 (2012), 76-85. MR 2897134,
Reference: [6] Calvo, T., Mayor, G., (Eds.), R. Mesiar: Aggregation Operators: New Trends and Applications..Physica-Verlag, Heidelberg, 2002. Zbl 0983.00020, MR 2015161
Reference: [7] Durante, F., Sarkoci, P.: A note on the convex combination of triangular norms..Fuzzy Sets Syst. 159 (2008), 77-80. MR 2371304,
Reference: [8] Drygaś, P.: Distributivity between semi-t-operators and semi-nullnorms..Fuzzy Sets Syst. 264 (2015), 100-109. MR 3303666,
Reference: [9] Fodor, J. C., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619,
Reference: [10] Fodor, J. C., Rudas, I. J.: A extension of the migrative property for triangular norms..Fuzzy Sets Syst. 168 (2011), 70-80. MR 2772621,
Reference: [11] Hu, S. K., Li, Z. F.: The structure of continuous uninorms..Fuzzy Sets Syst. 124 (2001), 43-52. MR 1859776,
Reference: [12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer, Dordrecht 2000. Zbl 1087.20041, MR 1790096,
Reference: [13] Li, G., Liu, H. W., Fodor, J. C.: On almost equitable uninorms..Kybernetika. 51 (2015), 699-711. MR 3423195,
Reference: [14] Li, W. H., Qin, F.: Migrativity equation for uninorms with continuous underlying operators..Fuzzy Sets Syst. 414 (2021), 115-134. MR 4251549,
Reference: [15] Li, W. H., Qin, F., Zhao, Y. Y.: A note on uninorms with continuous underlying operators..Fuzzy Sets Syst. 386 (2020), 36-47. MR 4073389,
Reference: [16] Mesiar, R., Novák, V.: Open problems..Tatra Mt. Math. Publ. 6 (1995), 195-204. MR 1363991
Reference: [17] Mesiar, R., Novák, V.: Open problems from the 2nd international conference on fuzzy sets theory and its applications..Fuzzy Sets Syst. 81 (1996), 185-190. MR 1392780,
Reference: [18] Mesiar, R., Bustince, H., Fernandez, J.: On the $\alpha$-migrivity of semicopulas, quasi-copulas and copulas..Inf. Sci. 180 (2010), 1967-1976. MR 2596346,
Reference: [19] Mesiarová-Zemánková, A.: Characterization of idempotent $n$-uninorms..Fuzzy Sets Syst. 427 (2022), 1-22. MR 4343686,
Reference: [20] Mesiarová-Zemánková, A.: Characterizing functions of $n$-uninorms with continuous underlying functions..IEEE Trans. Fuzzy Syst. 30 (2022), 5, 1239-1247.
Reference: [21] Mesiarová-Zemánková, A.: The $n$-uninorms with continuous underlying t-norms and t-conorms..Int. J. General Syst. 50 (2020), 92-116. MR 4210904,
Reference: [22] Mesiarová-Zemánková, A.: Characterization of $n$-uninorms with continuous underlying functions via $z$-ordinal sum construction..Int. J. Approx. Reason. 133 (2021), 60-79. MR 4238981,
Reference: [23] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: An extension of the migrative property for uninorms..Inf. Sci. 246 (2013), 191-198. MR 3073028,
Reference: [24] Mas, M., Mayor, G., Torrens, J.: T-operators..Int. J. Uncertain. Fuzziness Knowl.-based Syst. 7 (1999), 31-50. MR 1691482,
Reference: [25] Mas, M., Mayor, G., Torrens, J.: The modularity condition for uninorms and t-operators..Fuzzy Sets Syst. 126 (2002), 207-218. MR 1884687,
Reference: [26] Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J.: Migrativity of uninorms over t-norms and t-conorms..In: Aggregation Functions in Theory and in Practise (H. Bustince, J. Fernandez, R. Mesiar and T. Calvo, eds.), Springer Berlin, Heidelberg, pp. 155-166, 2013. MR 3588171,
Reference: [27] Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J.: Migrativity uninorms and nullnorms over t-norms and t-conorms..Fuzzy Sets Syst. 261 (2015), 20-32. MR 3291483,
Reference: [28] Ouyang, Y., Fang, J. X.: Some results of weighted qusi-arithmetic mean of continuous triangular norms..Inf. Sci. 178 (2008), 4396-4402. MR 2459859,
Reference: [29] Ouyang, Y., Fang, J. X., Li, G. L.: On the convex combination of $T_D$ and continuous triangular norms..Inf. Sci. 178 (2007), 2945-2953. MR 2333447,
Reference: [30] Qin, F., Ruiz-Aguilera, D.: On the $\alpha$-migrativity of idempotent uninorms..Int. J. Uncertain. Fuzziness Knowl.-based Syst. 23 (2015), 105-115. MR 3312783,
Reference: [31] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms..Kybernetika 40 (2004), 21-38. Zbl 1249.94095, MR 2068596
Reference: [32] Su, Y., Zong, W., Liu, H. W., Xue, P.: Migrative property for uninorms and semi-t-operators..Inf. Sci. 325 (2015), 455-465. MR 3392314,
Reference: [33] Su, Y., Zong, W., Drygaś, P.: Properties of uninorms with the underlying operation given as ordinal sums..Fuzzy Sets Syst. 357 (2019), 47-57. MR 3913058,
Reference: [34] Wang, Y. M., Qin, F.: Distributivity for 2-uninorms over semi-uninorms..Int. J. Uncertain. Fuzziness Knowl.-based Syst. 25 (2017), 317-345. MR 3631939,
Reference: [35] Wang, Y. M., Zong, W. W., Zhan, H., Liu, H. W.: On migrative 2-uninorms and nullnorms..Int. J. Uncertain. Fuzziness Knowl.-based Syst. 27 (2019), 303-328. MR 3934799,
Reference: [36] Wang, Y. M., Liu, H. W.: On the distributivity equation for uni-nullnorms..Kybernetika 55 (2019), 24-43. MR 3935413,
Reference: [37] Zong, W. W., Su, Y., Liu, H. W., Baets, B. D.: On the structure of 2-uninorms..Inf. Sci. 467 (2018), 506-527. MR 3851580,
.

Files

Files Size Format View
Kybernetika_58-2022-3_4.pdf 459.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo