Previous |  Up |  Next

Article

Title: Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium (English)
Author: Tiwari, Rakesh
Author: Rakočević, Vladimir
Author: Rajput, Shraddha
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 335-353
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce $\Theta_f$-type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics. (English)
Keyword: fixed point
Keyword: fuzzy metric spaces
Keyword: controlled fuzzy metric spaces
Keyword: fuzzy $\Theta _f$-contractive mapping
Keyword: dynamic market equilibrium
MSC: 47H10
MSC: 54H25
MSC: A11
idZBL: Zbl 07613049
idMR: MR4494095
DOI: 10.14736/kyb-2022-3-0335
.
Date available: 2022-10-06T14:46:06Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151034
.
Reference: [1] Aydi, H., Bota, M., Karapinar, E., S.Moradi: A common fixed point for weak $\phi$-contractions on $b$-metric spaces..Fixed Point Theory 13 (2012), 337-346. MR 3024322
Reference: [2] Afshari, H., Atapour, M., Aydi, H.: Generalized $\alpha-\psi-$Geraghty multivalued mappings on $b$-metric spaces endowed with a graph..J. Appl. Eng. Math. 7 (2017), 248-260. MR 3741903
Reference: [3] Aydi, H., R.Banković, I.Mitrović, Nazam, M.: Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces..Discret. Dyn. Nat. Soc. (2018), 4745764. MR 3827845,
Reference: [4] Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S.: $\alpha$-Contractive mappings on rectangular b-metric spaces and an application to integral equations..J. Math. Anal. 9 (2018), 47-60. MR 3896745
Reference: [5] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrals..Fund. Math. 3 (1922), 133-181. MR 3949898,
Reference: [6] Bakhtin, I. A.: The contraction mapping principle in almost metric spaces..Funct. Anal. 30 (1989), 26-37. MR 1204890,
Reference: [7] Boriceanu, M., Petrusel., A., Rus, I. A.: Fixed point theorems for some multivalued generalized contraction in b-metric spaces..Int. J. Math. Statist. 6 (2010), 65-76. MR 2520394
Reference: [8] Czerwik, S.: Contraction mappings in b-metric spaces..Acta Math. Inform. Univ. Ostrava 1 (1993), 5-11. MR 1250922,
Reference: [9] Dowling, T. E.: Introduction to Mathematical Economics..Schaum's Outline Series, 2001.
Reference: [10] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545,
Reference: [11] Gopal, D.: Contributions to fixed point theory of fuzzy contractive mappings..Adv. Metric Fixed Point Theory Appl. (2021), 241-282. MR 4306467,
Reference: [12] Gopal, D., T.Došenović: Fixed point theory for fuzzy contractive mappings..Metric Struct. Fixed Point Theory (2021), 199-244. MR 4394399,
Reference: [13] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces..Iranian J. Fuzzy Systems 11(2014), 3, 95-107. MR 3237493,
Reference: [14] Grabiec, M.: Fixed points in fuzzy metric spaces..Fuzzy Sets Systems 27 (1988), 385-389. Zbl 0664.54032, MR 0956385,
Reference: [15] Hao, Y., Guan, H.: On some common fixed point results for weakly contraction mappings with application..J. Funct. Spaces 2021 (2021), 5573983. MR 4243986,
Reference: [16] Kim, J. K.: Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces..J. Comput. Anal. Appl. 22 (2017), 336-345. MR 3643679
Reference: [17] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetika 11 (1975), 326-334. MR 0410633,
Reference: [18] Mehmood, F., Ali, R., Ionescu, C., Kamran, T.: Extended fuzzy b-metric spaces..J. Math. Anal. 8 (2017), 124-131. MR 3750093,
Reference: [19] Melliani, S., Moussaoui, A.: Fixed point theorem using a new class of fuzzy contractive mappings..J. Univer. Math. 1 (2018), 2, 148-154.
Reference: [20] Mihet, D.: Fuzzy $\psi$-contractive mappings in non-archimedean fuzzy metric spaces..Fuzzy Sets Systems 159 (2008), 6, 739-744. MR 2410532,
Reference: [21] Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T.: Controlled metric type spaces and the related contraction principle..Math. Molecul. Divers. Preservat. Int. 6 (2018), 1-7.
Reference: [22] Nadaban, S.: Fuzzy b-metric spaces..Int. J. Comput. Commun. Control 11 (2016), 273-281.
Reference: [23] Nasr, H. S., Imdad, M., Khan, I., Hasanuzzaman, M.: Fuzzy $\Theta_f$-contractive mappings and their fixed points with applications..J. Intell. Fuzzy Systems (2020), 1-10.
Reference: [24] Sezen, M. S.: Controlled fuzzy metric spaces and some related fixed point results..Numer. Part. Different. Equations (2020), 1-11. MR 4191089,
Reference: [25] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems..Fuzzy Sets Systems 350 (2018), 85-94. MR 3852589,
Reference: [26] Schweizer, B., Sklar, A.: Statistical metric spaces..Paciffc J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153,
Reference: [27] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces..Fuzzy Sets Systems 222 (2013), 108-114. MR 3053895,
Reference: [28] Zadeh, A. L.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427,
.

Files

Files Size Format View
Kybernetika_58-2022-3_3.pdf 812.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo