Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
pattern formation; reaction-diffusion model; Turing instability; diffusion-driven instability; bifurcation
Summary:
The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter $L$, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.
References:
[1] Allgower, E. L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics 45. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898719154 | MR 2001018 | Zbl 1036.65047
[2] Baker, R. E., Gaffney, E. A., Maini, P. K.: Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21 (2008), R251--R290. DOI 10.1088/0951-7715/21/11/R05 | MR 2448226 | Zbl 1159.35003
[3] Böhmer, K., Govaerts, W., Janovský, V.: Numerical detection of symmetry breaking bifurcation points with nonlinear degeneracies. Math. Comput. 68 (1999), 1097-1108. DOI 10.1090/S0025-5718-99-01052-2 | MR 1627846 | Zbl 0918.65039
[4] Chossat, P., Lauterbach, R.: Methods in Equivariant Bifurcations and Dynamical Systems. Advanced Series in Nonlinear Dynamics 15. World Scientific, Singapore (2000). DOI 10.1142/4062 | MR 1831950 | Zbl 0968.37001
[5] Dhooge, A., Govaerts, W., Kuznetsov, Y. A.: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29 (2003), 141-164. DOI 10.1145/779359.779362 | MR 2000880 | Zbl 1070.65574
[6] Dhooge, A., Govaerts, W., Kuznetsov, Y. A.: MATCONT and CL$_-$MATCONT: Continuation Toolboxes in MATLAB. University Gent, Gent (2011).
[7] Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12 (1972), 30-39. DOI 10.1007/BF00289234 | Zbl 1434.92013
[8] Golubitsky, M., Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory. I. Applied Mathematical Sciences 51. Springer, New York (1985). DOI 10.1007/978-1-4612-5034-0 | MR 0771477 | Zbl 0607.35004
[9] Golubitsky, M., Stewart, I., Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory. II. Applied Mathematical Sciences 69. Springer, New York (1988). DOI 10.1007/978-1-4612-4574-2 | MR 0950168 | Zbl 0691.58003
[10] Govaerts, W. J. F.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000). DOI 10.1137/1.9780898719543 | MR 1736704 | Zbl 0935.37054
[11] Janovský, V., Plecháč, P.: Numerical applications of equivariant reduction techniques. Bifurcation and Symmetry: Cross Influence Between Mathematics and Applications International Series of Numerical Mathematics 104. Birkhäuser, Basel (1992), 203-213. MR 1248618 | Zbl 0764.65031
[12] Klika, V.: Significance of non-normality-induced patterns: Transient growth versus asymptotic stability. Chaos 27 (2017), Article ID 073120, 9 pages. DOI 10.1063/1.4985256 | MR 3679679 | Zbl 1390.92021
[13] Klika, V., Baker, R. E., Headon, D., Gaffney, E. A.: The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74 (2012), 935-957. DOI 10.1007/s11538-011-9699-4 | MR 2903016 | Zbl 1235.92010
[14] Klika, V., Kozák, M., Gaffney, E. A.: Domain size driven instability: Self-organization in systems with advection. SIAM J. Appl. Math. 78 (2018), 2298-2322. DOI 10.1137/17M1138571 | MR 3850305 | Zbl 1396.35035
[15] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112. Springer, New York (1998). DOI 10.1007/b98848 | MR 1711790 | Zbl 0914.58025
[16] Marciniak-Czochra, A., Karch, G., Suzuki, K.: Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74 (2017), 583-618. DOI 10.1007/s00285-016-1035-z | MR 3600397 | Zbl 1356.35043
[17] Murray, J. D.: Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics 18. Springer, New York (2003). DOI 10.1007/b98869 | MR 1952568 | Zbl 1006.92002
[18] Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theoret. Biol. 81 (1979), 389-400. DOI 10.1016/0022-5193(79)90042-0 | MR 0558661
[19] Trefethen, L. N., Embree, M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005). MR 2155029 | Zbl 1085.15009
[20] Turing, A. M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237 (1952), 37-72. DOI 10.1098/rstb.1952.0012 | MR 3363444 | Zbl 1403.92034
Partner of
EuDML logo