[1] Åkervik, E., Brandt, L., Henningson, D. S., pffner, J. H\oe, Marxen, O., Schlatter, P.: 
Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys. Fluids 18 (2006), Article ID 068102. 
DOI 10.1063/1.2211705[2] Andreev, R., Schwab, C.: 
Sparse tensor approximation of parametric eigenvalue problems. Numerical Analysis of Multiscale Problems Lecture Notes in Computational Science and Engineering 83. Springer, Berlin (2012), 203-241. 
DOI 10.1007/978-3-642-22061-6_7 | 
MR 3050915 | 
Zbl 1248.65116[7] Foresee, F. Dan, Hagan, M. T.: 
Gauss-Newton approximation to Bayesian learning. Proceedings of International Conference on Neural Networks (ICNN'97). Vol. 3 IEEE, Piscataway (1997), 1930-1935. 
DOI 10.1109/ICNN.1997.614194[8] Elman, H. C., Meerbergen, K., Spence, A., Wu, M.: 
Lyapunov inverse iteration for identifying Hopf bifurcations in models of incompressible flow. SIAM J. Sci. Comput. 34 (2012), A1584--A1606. 
DOI 10.1137/110827600 | 
MR 2970265 | 
Zbl 1247.65047[14] Ghanem, R. G.: 
The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. J. Appl. Mech. 66 (1999), 964-973. 
DOI 10.1115/1.2791806[21] Loiseau, J. C., Bucci, M. A., Cherubini, S., Robinet, J.-C.: 
Time-stepping and Krylov methods for large-scale instability problems. Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics Computational Methods in Applied Sciences 50. Springer, Cham (2019), 33-73. 
DOI 10.1007/978-3-319-91494-7_2 | 
MR 3822594[26] Owen, N. E., Challenor, P., Menon, P. P., Bennani, S.: 
Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators. SIAM/ASA J. Uncertain. Quantif. 5 (2017), 403-435. 
DOI 10.1137/15M1046812 | 
MR 3639591 | 
Zbl 06736509[27] Peng, G. C. Y., Alber, M., al., A. Buganza Tepole et: 
Multiscale modeling meets machine learning: What can we learn?. Arch. Comput. Methods Eng. 28 (2021), 1017-1037. 
DOI 10.1007/s11831-020-09405-5 | 
MR 4246233[35] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D. L.: 
Accelerating the convergence of the back-propagation method. Biol. Cybern. 59 (1988), 257-263. 
DOI 10.1007/BF00332914[38] Yan, L., Duan, X., Liu, B., Xu, J.: Gaussian processes and polynomial chaos expansion for regression problem: Linkage via the RKHS and comparison via the KL divergence. Entropy 20 (2018), Article ID 191, 22 pages \99999DOI99999 10.3390/e20030191 \goodbreak.