Previous |  Up |  Next

Article

Title: Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis (English)
Author: Bastl, Bohumír
Author: Brandner, Marek
Author: Slabá, Kristýna
Author: Turnerová, Eva
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 6
Year: 2022
Pages: 805-829
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST $k$-$\omega $ turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house incompressible fluid flow solver based on isogeometric analysis (IgA) for the benchmark problem of a wall bounded turbulent fluid flow simulation over a backward-facing step. Pressure coefficient and reattachment length are compared to experimental data acquired by Driver and Seegmiller, to the computational results obtained by open source software OpenFOAM and to the NASA numerical results. \looseness +2 (English)
Keyword: isogeometric analysis
Keyword: turbulence modeling
Keyword: spurious oscillations
Keyword: stabilization techniques
Keyword: B-splines
Keyword: backward-facing step
MSC: 35Q35
MSC: 65M12
MSC: 65M60
idZBL: Zbl 07613024
idMR: MR4505705
DOI: 10.21136/AM.2022.0131-21
.
Date available: 2022-10-31T13:29:44Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151057
.
Reference: [1] Barrenechea, G. R., John, V., Knobloch, P.: A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations.ESAIM, Math. Model. Numer. Anal. 47 (2013), 1335-1366. Zbl 1303.65082, MR 3100766, 10.1051/m2an/2013071
Reference: [2] Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E.: Numerical simulation of lid-driven cavity flow by isogeometric analysis.Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48. 10.14311/AP.2021.61.0033
Reference: [3] Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E.: IgA-Based Solver for turbulence modelling on multipatch geometries.Adv. Eng. Softw. 113 (2017), 7-18. 10.1016/j.advengsoft.2017.06.012
Reference: [4] Bazilevs, Y., Calo, V. M., Cottrell, J. A., Hughes, T. J. R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows.Comput. Methods Appl. Mech. Eng. 197 (2007), 173-201. Zbl 1169.76352, MR 2361475, 10.1016/j.cma.2007.07.016
Reference: [5] Bazilevs, Y., Calo, V. M., Tezduyar, T. E., Hughes, T. J. R.: $YZ\beta$ discontinuity capturing for advection-dominated processes with application to arterial drug delivery.Int. J. Numer. Methods Fluids 54 (2007), 593-608. Zbl 1207.76049, MR 2333001, 10.1002/fld.1484
Reference: [6] Bressan, A., Sangalli, G.: Isogeometric discretizations of the Stokes problem: Stability analysis by the macroelement technique.IMA J. Numer. Anal. 33 (2013), 629-651. Zbl 1328.76025, MR 3047946, 10.1093/imanum/drr056
Reference: [7] Brooks, N. A., Hughes, T. J. R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 32 (1982), 199-259. Zbl 0497.76041, MR 0679322, 10.1016/0045-7825(82)90071-8
Reference: [8] Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation.Comput. Methods Appl. Mech. Eng. 199 (2010), 1143-1152. Zbl 1227.78026, MR 2594830, 10.1016/j.cma.2009.12.002
Reference: [9] Burman, E., Ern, A.: Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation.Comput. Methods Appl. Mech. Eng. 191 (2002), 3833-3855 \99999DOI99999 10.1016/S0045-7825(02)00318-3 . Zbl 1101.76354, MR 1912655
Reference: [10] Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V. M.: The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers.Comput. Methods Appl. Mech. Eng. 213-216 (2012), 353-361 \99999DOI99999 10.1016/j.cma.2011.11.002 . Zbl 1243.65137, MR 2880524
Reference: [11] Davidson, P. A.: Turbulence: An Introduction for Scientists and Engineers.Oxford University Press, Oxford (2004). Zbl 1061.76001, MR 2077129, 10.1063/1.2138427
Reference: [12] Donea, J., Huerta, A.: Finite Element Methods for Flow Problems.John Wiley & Sons, Chichester (2003),\99999DOI99999 10.1002/0470013826 .
Reference: [13] Driver, D. M., Seegmiller, H. L.: Features of a reattaching turbulent shear layer in divergent channel flow.AIAA J. 23 (1985), 163-171. 10.2514/3.8890
Reference: [14] Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). Zbl 1304.76002, MR 3235759, 10.1093/acprof:oso/9780199678792.001.0001
Reference: [15] Falini, A., Špeh, J., Jüttler, B.: Planar domain parameterization with THB-splines.Comput. Aided Geom. Des. 35-36 (2015), 95-108. Zbl 1417.65066, MR 3348885, 10.1016/j.cagd.2015.03.014
Reference: [16] Hiemstra, R. R., Sangalli, G., Tani, M., Calabrò, F., Hughes, T. J. R.: Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity.Comput. Methods Appl. Mech. Eng. 355 (2019), 234-260. Zbl 1441.74244, MR 3975736, 10.1016/j.cma.2019.06.020
Reference: [17] Hsu, M.-C., Bazilevs, Y., Calo, V. M., Tezduyar, T. E., Hughes, T. J. R.: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps.Comput. Methods Appl. Mech. Eng. 199 (2010), 828-840. Zbl 1406.76028, MR 2581346, 10.1016/j.cma.2009.06.019
Reference: [18] Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195 \99999DOI99999 10.1016/j.cma.2004.10.008 . Zbl 1151.74419, MR 2152382
Reference: [19] Hughes, T. J. R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of $p$-method finite elements with $k$-method NURBS.Comput. Methods Appl. Mech. Eng. 197 (2008), 4104-4124 \99999DOI99999 10.1016/j.cma.2008.04.006 . Zbl 1194.74114, MR 2463659
Reference: [20] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review.Comput. Methods Appl. Mech. Eng. 196 (2007), 2197-2215. Zbl 1173.76342, MR 2302890, 10.1016/j.cma.2006.11.013
Reference: [21] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for $P_1$ and $Q_1$ finite elements.Comput. Methods Appl. Mech. Eng. 197 (2008), 1997-2014. Zbl 1194.76122, MR 2417168, 10.1016/j.cma.2007.12.019
Reference: [22] John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusionreaction equations with small diffusion.Comput. Methods Appl. Mech. Eng. 198 (2008), 475-494. Zbl 1228.76088, MR 2479278, 10.1016/j.cma.2008.08.016
Reference: [23] Kim, J.-Y., Ghajar, A. J., Tang, C., Foutch, G. L.: Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow.Int. J. Comput. Fluid Dyn. 19 (2005), 493-500. Zbl 1184.76682, 10.1080/10618560500502519
Reference: [24] Kuzmin, D., Mierka, O., Turek, S.: On the implementation of the $k-\epsilon$ turbulence model in incompressible flow solvers based on a finite element discretization.Int. J. Comput. Sci. Math. 1 (2007), 193-206. Zbl 1185.76706, MR 2396378, 10.1504/IJCSM.2007.016531
Reference: [25] Center, Langley Research: NASA Turbulence Modeling Resource: 2DBFS: 2D Backward Facing Step.Available at \brokenlink{https://turbmodels.larc.nasa.gov/{backstep_val.html}} (2021).
Reference: [26] Li, R., Wu, Q., Zhu, S.: Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems.J. Comput. Phys. 387 (2019), 280-302. Zbl 1452.76094, MR 3924459, 10.1016/j.jcp.2019.02.051
Reference: [27] Mantzaflaris, A., Jüttler, B.: G+Smo (Geometry plus Simulation Modules) v0.8.1.Available at https://github.com/gismo (2018).
Reference: [28] Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab.Fluid Mechanics and Its Applications 113. Springer, Cham (2016). Zbl 1329.76001, MR 3382201, 10.1007/978-3-319-16874-6
Reference: [29] Nazarov, M.: Convergence of a residual based artificial viscosity finite element method.Comput. Math. Appl. 65 (2013), 616-626 \99999DOI99999 10.1016/j.camwa.2012.11.003 . Zbl 1319.65098, MR 3011445
Reference: [30] Nazarov, M., Hoffman, J.: Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods.Int. J. Numer. Methods Fluids 71 (2013), 339-357 \99999DOI99999 10.1002/fld.3663 . Zbl 1430.76314, MR 3008293
Reference: [31] Nichols, R. H.: Turbulence Models and Their Application to Complex Flows: Revision 4.01.University of Alabama at Birmingham, Birmingham (2014).
Reference: [32] Nordanger, K., Holdahl, R., Kvarving, A. M., Rasheed, A., Kvamsdal, T.: Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number.Comput. Methods Appl. Mech. Eng. 284 (2015), 664-688. Zbl 1425.65118, MR 3310302, 10.1016/j.cma.2014.10.033
Reference: [33] Group), OpenCFD (ESI: OpenFOAM: User Guide v2112: The open source CFD toolbox.Available at https://www.openfoam.com/documentation/guides/latest/doc/index.html (2019).
Reference: [34] Otoguro, Y., Takizawa, K., Tezduyar, T. E.: Element length calculation in B-spline meshes for complex geometries.Comput. Mech. 65 (2020), 1085-1103. Zbl 1462.76148, MR 4077709, 10.1007/s00466-019-01809-w
Reference: [35] Piegl, L., Tiller, W.: The $NURBS$ Books.Monographs in Visual Communication. Springer, Berlin (1997). Zbl 0868.68106, 10.1007/978-3-642-59223-2
Reference: [36] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-diffusion-reaction and Flow Problems.Springer Series in Computational Mathematics. Springer, Berlin (2008). Zbl 1155.65087, MR 2454024, 10.1007/978-3-540-34467-4
Reference: [37] Shakib, F., Hughes, T. J. R.: A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space-time Galerkin/least-squares algorithms.Comput. Methods Appl. Mech. Eng. 87 (1991), 35-58. Zbl 0760.76051, MR 1103416, 10.1016/0045-7825(91)90145-V
Reference: [38] Tagliabue, A., Dedè, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics.Comput. Fluids 102 (2014), 277-303. Zbl 1391.76360, MR 3248826, 10.1016/j.compfluid.2014.07.002
Reference: [39] Takizawa, K., Tezduyar, T. E., Otoguro, Y.: Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations.Comput. Mech. 62 (2018), 1169-1186. Zbl 1462.76128, MR 3876285, 10.1007/s00466-018-1557-x
Reference: [40] Tezduyar, T. E.: Finite element in fluids: Stabilized formulations and moving boundaries and interfaces.Comput. Fluids 36 (2007), 191-206. Zbl 1177.76202, MR 2288426, 10.1016/j.compfluid.2005.02.011
Reference: [41] Versteeg, H. K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method.Pearson Education, Harlow (2007).
Reference: [42] Wilcox, D. C.: Turbulence Modeling for CFD.DCW Industries, La Canada (2006).
Reference: [43] Zhang, H., Craft, T., Iacovides, H.: The formulation of the RANS equations for hypersonic turbulent flows.Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM'19) Avestia Publishing, Orléans (2019), Article ID 172, 9 pages. 10.11159/htff19.172
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo