Previous |  Up |  Next

Article

Title: On a new computational algorithm for impacts of elastic bodies (English)
Author: Štekbauer, Hynek
Author: Němec, Ivan
Author: Lang, Rostislav
Author: Burkart, Daniel
Author: Vala, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 6
Year: 2022
Pages: 775-804
Summary lang: English
.
Category: math
.
Summary: Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained from its software implementation. (English)
Keyword: computational mechanics
Keyword: contact problem
Keyword: finite element method
Keyword: explicit time integration algorithm
MSC: 74M15
MSC: 74S05
MSC: 74S20
idZBL: Zbl 07613023
idMR: MR4505704
DOI: 10.21136/AM.2022.0129-21
.
Date available: 2022-10-31T13:28:34Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151056
.
Reference: [1] Abe, K., Higashimori, N., Kubo, M., Fujiwara, H., Iso, Y.: A remark on the Courant-Friedrichs-Lewy condition in finite difference approach to PDE's.Adv. Appl. Math. Mech. 6 (2014), 693-698. MR 3244370, 10.4208/aamm.2014.5.s6
Reference: [2] Ahmad, M., Ismail, K. A., Mat, F.: Impact models and coefficient of restitution: A review.ARPN J. Eng. Appl. Sci. 11 (2016), 6549-6555.
Reference: [3] Bank, R. E., Dupont, T.: An optimal order process for solving finite element equations.Math. Comput. 36 (1981), 35-51. Zbl 0466.65059, MR 595040, 10.1090/S0025-5718-1981-0595040-2
Reference: [4] Bathe, K.-J.: Finite Element Procedures.Prentice Hall, New Jersey (2009).
Reference: [5] Castro, A. Bermúdez de: Continuum Thermomechanics.Progress in Mathematical Physics 43. Birkhäuser, Basel (2005). Zbl 1070.74001, MR 2145925, 10.1007/3-7643-7383-0
Reference: [6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (2002). Zbl 1012.65115, MR 1894376, 10.1007/978-1-4757-3658-8
Reference: [7] Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik.Math. Ann. 100 (1928), 32-74 German \99999JFM99999 54.0486.01. MR 1512478, 10.1007/BF01448839
Reference: [8] Duriez, C., Andriot, C., Kheddar, A.: Signorini's contact model for deformable objects in haptic simulations.International Conference on Intelligent Robots and Systems (IROS) IEEE, Piscataway (2004), 3232-3237. 10.1109/IROS.2004.1389915
Reference: [9] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics.Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). Zbl 0331.35002, MR 0521262, 10.1007/978-3-642-66165-5
Reference: [10] Eck, C., Jarušek, J., Sofonea, M.: A dynamic elastic-visco-plastic unilateral contact problems with normal damped response and Coulomb friction.Eur. J. Appl. Math. 21 (2010), 229-251. Zbl 1330.74131, MR 2646670, 10.1017/S0956792510000045
Reference: [11] Francavilla, A., Zienkiewicz, O. C.: A note on numerical computation of elastic contact problems.Int. J. Numer. Methods Eng. 9 (1975), 913-924. MR 3618552, 10.1002/nme.1620090410
Reference: [12] (ed.), J. O. Halquist: LS-DYNA Theoretical Manual.Livermore Software Technology Corporation, Livermore (2006).
Reference: [13] Halquist, J. O., Goudreau, G., Benson, D. J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations.Comput. Methods Appl. Mech. Eng. 51 (1985), 107-137. Zbl 0567.73120, MR 0822741, 10.1016/0045-7825(85)90030-1
Reference: [14] Han, J., Zeng, H.: Variational analysis and optimal control of dynamic unilateral contact models with friction.J. Math. Anal. Appl. 473 (2019), 712-748. Zbl 1433.49012, MR 3912849, 10.1016/j.jmaa.2018.12.068
Reference: [15] Hashiguchi, K.: Elastoplasticity Theory.Lecture Notes in Applied and Computational Mechanics 69. Springer, Berlin (2014). Zbl 1318.74001, MR 3235845, 10.1007/978-3-642-35849-4
Reference: [16] Hughes, T. J. R., Taylor, R. L., Kanoknukulchai, W.: A finite element method for large displacement contact and impact problems.Formulations and Computational Algorithms in Finite Element Analysis M.I.T. Press, Cambridge (1977), 468-495. MR 0475196
Reference: [17] Kloosterman, G., Damme, R. M. J. van, Boogaard, A. H. van der, Huétink, J.: A geometrical-based contact algorithm using a barrier method.Int. J. Numer. Methods Eng. 51 (2001), 865-882. Zbl 1039.74046, MR 1837060, 10.1002/nme.209
Reference: [18] Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., Markert, B.: Automated identification of the coefficient of restitution via bouncing ball measurement.Arch. Appl. Mech. 91 (2021), 47-60. 10.1007/s00419-020-01751-x
Reference: [19] Laursen, T. A.: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis.Springer, Berlin (2002). Zbl 0996.74003, MR 1902698, 10.1007/978-3-662-04864-1
Reference: [20] Li, J., Yu, K., Li, X.: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis.Nonlinear Dyn. 96 (2019), 2475-2507. 10.1007/s11071-019-04936-4
Reference: [21] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [22] Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., Zhang, W. J.: Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system.Mech. Sci. 6 (2015), 15-28. 10.5194/ms-6-15-2015
Reference: [23] Na, J., Chen, Q., Ren, X.: Adaptive Identification and Control of Uncertain Systems with Non-Smooth Dynamics.Emerging Methodologies and Applications in Modelling, Identification and Control. Academic Press, Amsterdam (2018). Zbl 1415.93006, 10.1016/C2016-0-04487-X
Reference: [24] Němec, I., Štekbauer, H., Vaněčková, A., Vlk, Z.: Explicit and implicit method in nonlinear seismic analysis.Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 66, 8 pages. 10.1051/matecconf/201710700066
Reference: [25] Puso, M. A.: A 3D mortar method for solid mechanics.Int. J. Numer. Methods Eng. 59 (2004), 315-336. Zbl 1047.74065, 10.1002/nme.865
Reference: [26] Rek, V., Vala, J.: On a distributed computing platform for a class of contact-impact problems.Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 64-67.
Reference: [27] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications (East European Series) 4. D. Reidel, Dordrecht (1982). Zbl 0505.65029, MR 0689712
Reference: [28] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). Zbl 1087.35002, MR 2176645, 10.1007/978-3-0348-0513-1
Reference: [29] Sanz-Serna, J. M., Spijker, M. N.: Regions of stability, equivalence theorems and the Courant-Friedrichs-Lewy condition.Numer. Math. 49 (1986), 319-329. Zbl 0574.65106, MR 0848530, 10.1007/BF01389633
Reference: [30] Schwab, A. L.: On the interpretation of the Lagrange multipliers in the constraint formulation of contact problems; or why are some multipliers always zero?.Proc. ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE ASME, New York (2014), 1-5.
Reference: [31] Sewerin, F., Papadopoulos, P.: On the finite element solution of frictionless contact problems using an exact penalty approach.Comput. Methods Appl. Mech. Eng. 368 (2020), Article ID 113108, 24 pages. Zbl 07337970, MR 4114140, 10.1016/j.cma.2020.113108
Reference: [32] Shi, P.: The restitution coefficient for a linear elastic rod.Math. Comput. Modelling 28 (1998), 427-435. Zbl 1122.74429, MR 1648769, 10.1016/S0895-7177(98)00132-0
Reference: [33] Sofonea, M., Danan, D., Zheng, C.: Primal and dual variational formulation of frictional contact problem.Mediterr. J. Math. 13 (2016), 857-872. Zbl 1335.74048, MR 3483867, 10.1007/s00009-014-0504-0
Reference: [34] Štekbauer, H.: The pulley element.Trans. VŠB-TU Ostrava 16 (2016), 161-164. 10.1515/tvsb-2016-0027
Reference: [35] Štekbauer, H., Lang, R., Zeiner, M., Burkart, D.: A correct and efficient algorithm for impacts of bodies.Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 55-58.
Reference: [36] Štekbauer, H., Němec, I.: Modeling of welded connections using Lagrange multipliers.AIP Conf. Proc. 2293 (2020), Article ID 340013, 4 pages. 10.1063/5.0031396
Reference: [37] Štekbauer, H., Vlk, Z.: The modification of a node-to-node algorithm for the modelling of beam connections in RFEM and SCIA using the explicit method.Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 60, 6 pages. 10.1051/matecconf/201710700060
Reference: [38] Vala, J., Kozák, V.: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites.Theor. Appl. Fracture Mech. 107 (2020), Article ID 102486, 8 pages. 10.1016/j.tafmec.2020.102486
Reference: [39] Vala, J., Kozák, V.: Non-local damage modelling of quasi-brittle composites.Appl. Math., Praha 66 (2021), 815-836. Zbl 07442408, MR 4342610, 10.21136/AM.2021.0281-20
Reference: [40] Weyler, R., Oliver, J., Sain, T., Cante, J. C.: On the contact domain method: A comparison of penalty and Lagrange multiplier implementations.Comput. Methods Appl. Mech. Eng. 205-208 (2012), 68-82. Zbl 1239.74075, MR 2872027, 10.1016/j.cma.2011.01.011
Reference: [41] Wriggers, P.: Finite element algorithms for contact problems.Arch. Comput. Methods Eng. 2 (1995), 1-49. MR 1367147, 10.1007/BF02736195
Reference: [42] Wu, S. R.: A variational principle for dynamic contact with large deformation.Comput. Methods Appl. Mech. Eng. 198 (2009), 2009-2015. Zbl 1227.74041, 10.1016/j.cma.2008.12.013
Reference: [43] Wu, S. R.: Corrigendum to: "A variational principle for dynamic contact with large deformation".Comput. Methods Appl. Mech. Eng. 199 (2009), 220. Zbl 1231.74332, MR 1344385, 10.1016/j.cma.2009.10.003
Reference: [44] Xu, D., Hjelmstad, K. D.: A new node-to-node approach to contact/impact problems for two dimensional elastic solids subject to finite deformation.Newmark Structural Laboratory Report Series University of Illinois, Urbana-Champaign (2008), Available at http://hdl.handle.net/2142/5318\kern0pt.
Reference: [45] Yang, B., Laursen, T. A.: A large deformation mortar formulation of self contact with finite sliding.Comput. Methods Appl. Mech. Eng. 197 (2008), 756-772. Zbl 1169.74513, MR 2397015, 10.1016/j.cma.2007.09.004
Reference: [46] Yang, B., Laursen, T. A., Meng, X.: Two dimensional mortar contact methods for large deformation frictional sliding.Int. J. Numer. Methods Eng. 62 (2005), 1183-1225. Zbl 1161.74497, MR 2120292, 10.1002/nme.1222
Reference: [47] Yastrebov, V. A.: Numerical Methods in Contact Mechanics.J. Wiley & Sons, London (2013). Zbl 1268.74003, 10.1002/9781118647974
Reference: [48] Zavarise, G., Lorenzis, L. de: A modified node-to-segment algorithm passing the contact patch test.Int. J. Numer. Methods Eng. 79 (2009), 379-416. Zbl 1171.74455, 10.1002/nme.2559
Reference: [49] Zhong, Z.-H.: Finite Element Procedures for Contact-Impact Problems.Oxford University Press, Oxford (1993). MR 1206475
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo