Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
self-small abelian group; slender group
Summary:
Let $A$ and $B$ be two abelian groups. The group $A$ is called $B$-small if the covariant functor ${\rm Hom}(A,-)$ commutes with all direct sums $B^{(\kappa)}$ and $A$ is self-small provided it is $A$-small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.
References:
[1] Albrecht U., Breaz S.: A note on self-small modules over RM-domains. J. Algebra Appl. 13 (2014), no. 1, 1350073, 8 pages. DOI 10.1142/S0219498813500734 | MR 3096854
[2] Albrecht U., Breaz S., Schultz P.: Functorial properties of Hom and Ext. in: Groups and Model Theory, Contemp. Math., 576, Amer. Math. Soc., Providence, 2012, pages 1–15. MR 2962871
[3] Albrecht U., Breaz S., Wickless W.: Purity and self-small groups. Comm. Algebra 35 (2007), no. 11, 3789–3807. DOI 10.1080/00927870701509545 | MR 2362684
[4] Albrecht U., Breaz S., Wickless W.: Self-small abelian groups. Bull. Aust. Math. Soc. 80 (2009), no. 2, 205–216. DOI 10.1017/S0004972709000185 | MR 2540354
[5] Arnold D. M., Murley C. E.: Abelian groups, $A$, such that $ Hom(A, - - -)$ preserves direct sums of copies of $A$. Pacific J. Math. 56 (1975), no. 1, 7–20. DOI 10.2140/pjm.1975.56.7 | MR 0376901
[6] Bass H.: Algebraic $K$-theory. Mathematics Lecture Note Series, W. A. Benjamin, New York, 1968. MR 0249491
[7] Breaz S.: Self-small abelian groups as modules over their endomorphism rings. Comm. Algebra 31 (2003), no. 10, 4911–4924. DOI 10.1081/AGB-120023139 | MR 1998035
[8] Breaz S.: A mixed version for a Fuchs’ lemma. Rend. Semin. Mat. Univ. Padova 144 (2020), 61–71. DOI 10.4171/RSMUP/56 | MR 4186446
[9] Breaz S., Schultz P.: Dualities for self-small groups. Proc. Amer. Math. Soc. 140 (2012), no. 1, 69–82. DOI 10.1090/S0002-9939-2011-10919-5 | MR 2833518
[10] Breaz S., Žemlička J.: When every self-small module is finitely generated. J. Algebra 315 (2007), no. 2, 885–893. DOI 10.1016/j.jalgebra.2007.01.037 | MR 2351899
[11] Colpi R., Menini C.: On the structure of $\star$-modules. J. Algebra 158 (1993), no. 2, 400–419. DOI 10.1006/jabr.1993.1138 | MR 1226797
[12] Dvořák J.: On products of self-small abelian groups. Stud. Univ. Babeş–Bolyai Math. 60 (2015), no. 1, 13–17. MR 3335780
[13] Dvořák J., Žemlička J.: Autocompact objects of Ab5 categories. Theory Appl. Categ. 37 (2021), Paper No. 30, 979–995. MR 4326106
[14] Fuchs L.: Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics, 36, Academic Press, New York, 1970. MR 0255673 | Zbl 0338.20063
[15] Fuchs L.: Infinite Abelian Groups. Vol. II. Pure and Applied Mathematics, 36-II, Academic Press, New York, 1973. MR 0349869
[16] Gómez Pardo J. L., Militaru G., Năstăsescu C.: When is $\mathrm{HOM}_R(M,-)$ equal to $\mathrm{Hom}_R(M,-)$ in the category $R-gr$?. Comm. Algebra 22 (1994), no. 8, 3171–3181. MR 1272380
[17] Kálnai P., Žemlička J.: Compactness in abelian categories. J. Algebra 534 (2019), 273–288. DOI 10.1016/j.jalgebra.2019.05.037 | MR 3979075
[18] Modoi G. C.: Constructing large self-small modules. Stud. Univ. Babeş–Bolyai Math. 64 (2019), no. 1, 3–10. DOI 10.24193/subbmath.2019.1.01 | MR 3928597
[19] Rentschler R.: Sur les modules $M$ tels que $ Hom(M,-)$ commute avec les sommes directes. C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A930–A933 (French). MR 0241466
[20] Žemlička J.: When products of self-small modules are self-small. Comm. Algebra 36 (2008), no. 7, 2570–2576. DOI 10.1080/00927870802070207 | MR 2422503
Partner of
EuDML logo