Previous |  Up |  Next

Article

Title: Note on the Hilbert 2-class field tower (English)
Author: Azizi, Abdelmalek
Author: Chems-Eddin, Mohamed Mahmoud
Author: Zekhnini, Abdelkader
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 4
Year: 2022
Pages: 513-524
Summary lang: English
.
Category: math
.
Summary: Let $k$ be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\Bbbk =\Bbb {Q}\big (\sqrt d, \sqrt {-1}\big )$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020). (English)
Keyword: multiquadratic field
Keyword: fundamental systems of units
Keyword: 2-class group
Keyword: 2-class field tower
Keyword: capitulation
MSC: 11R11
MSC: 11R16
MSC: 11R20
MSC: 11R27
MSC: 11R29
MSC: 11R37
idZBL: Zbl 07655824
idMR: MR4512171
DOI: 10.21136/MB.2022.0056-21
.
Date available: 2022-11-16T11:17:53Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151096
.
Reference: [1] Azizi, A.: Sur le 2-groupe de classes d'idéaux de $\mathbb Q(\sqrt d, i)$.Rend. Circ. Mat. Palermo, II. Ser. French 48 (1999), 71-92. Zbl 0920.11076, MR 1705171, 10.1007/BF02844380
Reference: [2] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$.Ann. Sci. Math. Qué. 23 (1999), 15-21 French. Zbl 1041.11072, MR 1721726
Reference: [3] Azizi, A., Benhamza, I.: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$.Ann. Sci. Math. Qué. French 29 (2005), 1-20. Zbl 1217.11097, MR 2296826
Reference: [4] Azizi, A., Zekhnini, A.: The structure of the second 2-class group of some special Dirichlet fields.Asian-Eur. J. Math. 13 (2020), Article ID 2050053, 6 pages. Zbl 1442.11154, MR 4096421, 10.1142/S1793557120500539
Reference: [5] Azizi, A., Zekhnini, A., Taous, M.: The generators of the 2-class group of some field $\mathbb Q(\sqrt{pq_1q_2,i})$: Correction to Theorem 3 of [5].Int. J. Pure Appl. Math. 103 (2015), 99-107. MR 3405725, 10.12732/ijpam.v103i1.8
Reference: [6] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields.Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. Zbl 07342807, MR 4220815, 10.1007/s40590-021-00329-z
Reference: [7] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields.Turk. J. Math. 44 (2020), 1466-1483. Zbl 1455.11140, MR 4122918, 10.3906/mat-2003-117
Reference: [8] Conner, P. E., Hurrelbrink, J.: Class Number Parity.Series in Pure Mathematics 8. World Scientific, Singapore (1988). Zbl 0743.11061, MR 0963648, 10.1142/0663
Reference: [9] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics. Harper and Row, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [10] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen.J. Reine Angew. Math. 366 (1982), 1-25 German. Zbl 0505.12016, MR 0671319, 10.1515/crll.1982.336.1
Reference: [11] Hilbert, D.: Über den Dirichlet'schen biquadratischen Zahlkörper.Math. Ann. 45 (1894), 309-340 German \99999JFM99999 25.0303.01. MR 1510866, 10.1007/BF01446682
Reference: [12] Kaplan, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques.J. Reine Angew. Math. 283/284 (1976), 313-363 French. Zbl 0337.12003, MR 0404206, 10.1515/crll.1976.283-284.313
Reference: [13] Kisilevsky, H.: Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94.J. Number Theory 8 (1976), 271-279. Zbl 0334.12019, MR 0417128, 10.1016/0022-314X(76)90004-4
Reference: [14] Wada, H.: On the class number and the unit group of certain algebraic number fields.J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. Zbl 0158.30103, MR 0214565
.

Files

Files Size Format View
MathBohem_147-2022-4_6.pdf 252.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo