Previous |  Up |  Next

Article

Title: $G$-supplemented property in the lattices (English)
Author: Ebrahimi Atani, Shahabaddin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 4
Year: 2022
Pages: 525-545
Summary lang: English
.
Category: math
.
Summary: Let $L$ be a lattice with the greatest element $1$. Following the concept of generalized small subfilter, we define $g$-supplemented filters and investigate the basic properties and possible structures of these filters. (English)
Keyword: filter
Keyword: $g$-small
Keyword: $g$-supplemented
Keyword: lattice
MSC: 06C05
MSC: 06C15
idZBL: Zbl 07655825
idMR: MR4512172
DOI: 10.21136/MB.2022.0124-20
.
Date available: 2022-11-16T11:18:25Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151097
.
Reference: [1] Birkhoff, G.: Lattice Theory.Colloquium Publications 25. AMS, Providence (1967). Zbl 0153.02501, MR 0227053, 10.1090/coll/025
Reference: [2] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9
Reference: [3] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory.Frontiers in Mathematics. Birkhäuser, Basel (2006). Zbl 1102.16001, MR 2253001, 10.1007/3-7643-7573-6
Reference: [4] Atani, S. Ebrahimi, Chenari, M.: Supplemented property in the lattices.Serdica Math. J. 46 (2020), 73-88. MR 4124062
Reference: [5] Atani, S. Ebrahimi, Hesari, S. Dolati Pish, Khoramdel, M., Bazari, M. Sedghi Shanbeh: A semiprime filter-based identity-summand graph of a lattice.Matematiche 73 (2018), 297-318. Zbl 07142702, MR 3884546, 10.4418/2018.73.2.5
Reference: [6] Atani, S. Ebrahimi, Bazari, M. Sedghi Shanbeh: On 2-absorbing filters of lattices.Discuss. Math., Gen. Algebra Appl. 36 (2016), 157-168. Zbl 07278179, MR 3594959, 10.7151/dmgaa.1253
Reference: [7] Kasch, F., Mares, E. A.: Eine Kennzeichnung semi-perfekter Moduln.Nagoya Math. J. 27 (1966), 525-529. Zbl 0158.28901, MR 0199227, 10.1017/S0027763000026350
Reference: [8] Koşar, B., Nebiyev, C., Sökmez, N.: $g$-supplemented modules.Ukr. Math. J. 67 (2015), 975-980. Zbl 1352.16001, MR 3432491, 10.1007/s11253-015-1127-8
Reference: [9] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules.London Mathematical Society Lecture Note Series 147. Cambridge University Press, London (1990). Zbl 0701.16001, MR 1084376, 10.1017/CBO9780511600692
Reference: [10] Quynh, T. C., Tin, P. H.: Some properties of $e$-supplemented and $e$-lifting modules.Vietnam J. Math. 41 (2013), 303-312. Zbl 1281.16006, MR 3103264, 10.1007/s10013-013-0022-6
Reference: [11] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research.Algebra, Logic and Applications 3. Gordon and Breach, Philadelphia (1991). Zbl 0746.16001, MR 1144522
Reference: [12] Zhou, D. X., Zhang, X. R.: Small-essential submodules and Morita duality.Southeast Asian Bull. Math. 35 (2011), 1051-1062. Zbl 1265.16011, MR 2907772
Reference: [13] Zöschinger, H.: Komplementierte Moduln über Dedekindringen.J. Algebra 29 (1974), 42-56 German. Zbl 0277.13008, MR 0340347, 10.1016/0021-8693(74)90109-4
.

Files

Files Size Format View
MathBohem_147-2022-4_7.pdf 284.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo