Previous |  Up |  Next

Article

Title: Quasi-tree graphs with the minimal Sombor indices (English)
Author: Li, Yibo
Author: Liu, Huiqing
Author: Zhang, Ruiting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1227-1238
Summary lang: English
.
Category: math
.
Summary: The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively. (English)
Keyword: Sombor index
Keyword: quasi-tree
Keyword: tree
MSC: 05C07
MSC: 05C09
MSC: 05C35
idZBL: Zbl 07655797
idMR: MR4517610
DOI: 10.21136/CMJ.2022.0152-22
.
Date available: 2022-11-28T11:45:36Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151144
.
Reference: [1] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244. Springer, Berlin (2008),\99999DOI99999 10.1007/978-1-84628-970-5 . Zbl 1134.05001, MR 2368647
Reference: [2] Chen, H., Li, W., Wang, J.: Extremal values on the Sombor index of trees.MATCH Commun. Math. Comput. Chem. 87 (2022), 23-49. Zbl 7582823, 10.46793/match.87-1.023C
Reference: [3] Cruz, R., Gutman, I., Rada, J.: Sombor index of chemical graphs.Appl. Math. Comput. 399 (2021), Article ID 126018, 10 pages. Zbl 07423489, MR 4212004, 10.1016/j.amc.2021.126018
Reference: [4] Cruz, R., Rada, J.: Extremal values of the Sombor index in unicyclic and bicyclic graphs.J. Math. Chem. 59 (2021), 1098-1116. Zbl 1462.05071, MR 4232832, 10.1007/s10910-021-01232-8
Reference: [5] Cruz, R., Rada, J., Sigarreta, J. M.: Sombor index of trees with at most three branch vertices.Appl. Math. Comput. 409 (2021), Article ID 126414, 9 pages. Zbl 07425030, MR 4271495, 10.1016/j.amc.2021.126414
Reference: [6] Das, K. C., Gutman, I.: On Sombor index of trees.Appl. Math. Comput. 412 (2022), Article ID 126575, 8 pages. Zbl 07426979, MR 4300333, 10.1016/j.amc.2021.126575
Reference: [7] Deng, H., Tang, Z., Wu, R.: Molecular trees with extremal values of Sombor indices.Int. J. Quantum Chem. 121 (2021), Article ID e26622, 9 pages. 10.1002/qua.26622
Reference: [8] Gutman, I.: Geometric approach to degree-based topological indices: Sombor indices.MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16. Zbl 1474.92154
Reference: [9] Liu, H., Chen, H., Xiao, Q., Fang, X., Tang, Z.: More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons.Int. J. Quantum Chem. 121 (2021), Article ID e26689, 9 pages. 10.1002/qua.26689
Reference: [10] Liu, H., Gutman, I., You, L., Huang, Y.: Sombor index: Review of extremal results and bounds.J. Math. Chem. 60 (2022), 771-798. Zbl 07534385, MR 4402726, 10.1007/s10910-022-01333-y
Reference: [11] Rada, J., Rodríguez, J. M., Sigarreta, J. M.: General properties on Sombor indices.Discrete Appl. Math. 299 (2021), 87-97. Zbl 1465.05042, MR 4256885, 10.1016/j.dam.2021.04.014
Reference: [12] Réti, T., Došlić, T., Ali, A.: On the Sombor index of graphs.Contrib. Math. 3 (2021), 11-18. MR 4399418, 10.47443/cm.2021.0006
Reference: [13] Wang, Z., Mao, Y., Li, Y., Furtula, B.: On relations between Sombor and other degree-based indices.J. Appl. Math. Comput. 68 (2022), 1-17 \99999DOI99999 10.1007/s12190-021-01516-x . Zbl 07534916, MR 4370614
Reference: [14] Zhou, T., Lin, Z., Miao, L.: The Sombor index of trees and unicyclic graphs with given maximum degree.DML, Discrete Math. Lett. 7 (2021), 24-29. MR 4256414, 10.47443/dml.2021.0035
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo