Title:
|
Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem (English) |
Author:
|
Bouchal, Lydia |
Author:
|
Mebarki, Karima |
Author:
|
Georgiev b , Svetlin Georgiev |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
199-211 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation. (English) |
Keyword:
|
fixed point |
Keyword:
|
sum of operators |
Keyword:
|
non-autonomous difference equations |
Keyword:
|
positive solution |
MSC:
|
39A27 |
MSC:
|
47H10 |
idZBL:
|
Zbl 07655743 |
idMR:
|
MR4529813 |
DOI:
|
10.5817/AM2022-4-199 |
. |
Date available:
|
2022-11-28T12:20:12Z |
Last updated:
|
2023-08-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151146 |
. |
Reference:
|
[1] Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive solutions of differential, difference and integral equations.Springer Science and Business Media, 1998. MR 1680024 |
Reference:
|
[2] Anderson, D.R., Avery, R.I.: Multiple positive solutions to a third-order discrete focal boundary value problem.Comput. Math. Appl. 42 (3–5) (2001), 333–340. MR 1837995, 10.1016/S0898-1221(01)00158-4 |
Reference:
|
[3] Anderson, D.R., Avery, R.I.: Fixed point theorem of cone expansion and compression of functional type.J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. MR 1942442, 10.1080/10236190290015344 |
Reference:
|
[4] Anderson, D.R., Avery, R.I.: A topological proof and extension of the Leggett-Williams fixed point theorem.Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. MR 2591327 |
Reference:
|
[5] Anderson, D.R., Avery, R.I.: Application of the omitted ray fixed point theorem.Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. MR 3210547, 10.14232/ejqtde.2014.1.17 |
Reference:
|
[6] Anderson, D.R., Avery, R.I., Henderson, J.: Some Fixed point theorems of Leggett-Williams type.Rocky Montain J. Math. 41 (2011), 371–386. MR 2794444 |
Reference:
|
[7] Anderson, D.R., Avery, R.I., Henderson, J.: An extension of the compression-expansion fixed point theorem of functional type.Electron. J. Differential Equations 2016 (253) (2016), 1–9. MR 3578274 |
Reference:
|
[8] Anderson, D.R., Avery, R.I., Henderson, J., Liu, X.: Operator type compression-expansion fixed point theorem.Electron. J. Differential Equations 2011 (2011), 1–11. MR 2788661 |
Reference:
|
[9] Anderson, D.R., Henderson, J., Avery, R.I.: Functional compression-expansion fixed point theorem of Leggett-Williams type.Electron. J. Differential Equations 2010 (2010), 1–9. MR 2651744 |
Reference:
|
[10] Banas, J., Goebel, K.: Measures of noncompactness in Banach spaces.Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. MR 0591679 |
Reference:
|
[11] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contractions.Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. MR 4061312 |
Reference:
|
[12] Georgiev, S.G., Mebarki, K.: On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs.Appl. Gen. Topol. 22 (2) (2021), 259–294. MR 4359767, 10.4995/agt.2021.13248 |
Reference:
|
[13] Guo, D.: A new fixed point theorem.Acta Math. Sinica 24 (3) (1981), 444–450. MR 0634843 |
Reference:
|
[14] Guo, D., Cho, Y.J., Zhu, J.: Partial ordering methods in nonlinear problems.Shangdon Science and Technology Publishing Press, Shangdon, 1985. MR 2084490 |
Reference:
|
[15] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones.vol. 5, Academic Press, Boston, Mass., USA, 1988. Zbl 0661.47045, MR 0959889 |
Reference:
|
[16] He, X., Ge, W.: Triple solutions for second-order three-point boundary value problems.J. Math. Anal. Appl. 268 (1) (2002), 256–265. MR 1893205, 10.1006/jmaa.2001.7824 |
Reference:
|
[17] Henderson, J., Liu, X., Lyons, J.W., al., et: Right focal boundary value problems for difference equations.Opuscula Math. 30 (4) (2010), 447–456. MR 2726433, 10.7494/OpMath.2010.30.4.447 |
Reference:
|
[18] Henderson, J., Thompson, H.: Multiple symmetric positive solutions for a second order boundary value problem.Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. MR 1709753, 10.1090/S0002-9939-00-05644-6 |
Reference:
|
[19] Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach space.Indiana Univ. Math. J. 28 (4) (1979), 673–688. MR 0542951, 10.1512/iumj.1979.28.28046 |
Reference:
|
[20] Lyons, J.W., Neugebauer, J.T.: A difference equation with anti-periodic boundary conditions.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. MR 3423259 |
Reference:
|
[21] Mohamed, A.: Existence of positive solutions for a fourth-order three-point BVP with sign-changing green’s function.Appl. Math. 12 (4) (2021), 311–321. 10.4236/am.2021.124022 |
Reference:
|
[22] Neugebauer, J., Seelbach, C.: A difference equation with Dirichlet boundary conditions.Commun. Appl. Anal. 21 (2) (2017), 237–248. |
Reference:
|
[23] Neugebauer, J.T.: The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions.Int. J. Difference Equ. 15 (2) (2020), 483–491. |
Reference:
|
[24] Tian, Y., Ma, D., Ge, W.: Multiple positive solutions of four point boundary value problems for finite difference equations.J. Difference Equ. Appl. 12 (1) (2006), 57–68. MR 2197585, 10.1080/10236190500376342 |
Reference:
|
[25] Yao, Q.L.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem.Acta Math. Appl. Sin. 19 (1) (2003), 117–122. Zbl 1048.34031, MR 2053778, 10.1007/s10255-003-0087-1 |
Reference:
|
[26] Zhang, H.E., Sun, J.P.: A generalization of the Leggett-Williams fixed point theorem and its application.J. Appl. Math. Comput. 39 (1) (2012), 385–399. MR 2914482, 10.1007/s12190-011-0531-y |
. |