Previous |  Up |  Next

Article

Title: Median prime ideals of pseudo-complemented distributive lattices (English)
Author: Sambasiva Rao, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 4
Year: 2022
Pages: 213-226
Summary lang: English
.
Category: math
.
Summary: Coherent ideals, strongly coherent ideals, and $\tau $-closed ideals are introduced in pseudo-complemented distributive lattices and their characterization theorems are derived. A set of equivalent conditions is derived for every ideal of a pseudo-complemented distributive lattice to become a coherent ideal. The notion of median prime ideals is introduced and some equivalent conditions are derived for every maximal ideal of a pseudo-complemented distributive lattice to become a median prime ideal which leads to a characterization of Boolean algebras. (English)
Keyword: coherent ideal
Keyword: strongly coherent ideal
Keyword: median prime ideal
Keyword: maximal ideal
Keyword: Stone lattice
Keyword: Boolean algebra
MSC: 06D99
idZBL: Zbl 07655744
idMR: MR4529814
DOI: 10.5817/AM2022-4-213
.
Date available: 2022-11-28T12:21:13Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151148
.
Reference: [1] Balbes, R., Horn, A.: Stone lattices.Duke Math. J. 37 (1970), 537–545. Zbl 0207.02802, MR 0277448
Reference: [2] Birkhoff, G.: Lattice theory.Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967. Zbl 0153.02501, MR 0227053
Reference: [3] Cornish, W.H.: Normal lattices.J. Aust. Math. Soc. 14 (1972), 200–215. MR 0313148, 10.1017/S1446788700010041
Reference: [4] Frink, O.: Pseudo-complements in semi-lattices.Duke Math. J. 29 (1962), 505–514. Zbl 0114.01602, MR 0140449, 10.1215/S0012-7094-62-02951-4
Reference: [5] Gratzer, G.: General lattice theory.Academic Press, New York, San Francisco, USA, 1978. MR 0509213
Reference: [6] Rao, M. Sambasiva: $\delta $-ideals in pseudo-complemented distributive lattices.Arch. Math. (Brno) 48 (2) (2012), 97–105. MR 2946209
Reference: [7] Rao, M. Sambasiva, Badawy, Abd. El-Mohsen: Normal ideals of pseudo-complemented distributive lattices.Chamchuri J. Math. 9 (2017), 61–73. MR 3808961
Reference: [8] Speed, T.P.: On Stone lattices.J. Aust. Math. Soc. 9 (3–4) (1969), 297–307. MR 0246801, 10.1017/S1446788700007217
Reference: [9] Speed, T.P.: Some remarks on a class of distributive lattices.J. Aust. Math. Soc. 9 (1969), 289–296. MR 0246800, 10.1017/S1446788700007205
Reference: [10] Stone, M.H.: A theory of representations for Boolean algebras.Trans. Amer. Math. Soc. 40 (1936), 37–111. MR 1501865
Reference: [11] Venatanarasimham, P.V.: Pseudo-complements in Posets.Proc. Amer. Math. Soc. 28 (1) (1971), 9–17. MR 0272687, 10.1090/S0002-9939-1971-0272687-X
.

Files

Files Size Format View
ArchMathRetro_058-2022-4_2.pdf 417.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo