Previous |  Up |  Next

Article

Title: Boundary value problems for Caputo-Hadamard fractional differential inclusions in Banach spaces (English)
Author: Hammou, Amouria
Author: Hamani, Samira
Author: Henderson, Johnny
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 4
Year: 2022
Pages: 227-240
Summary lang: English
.
Category: math
.
Summary: In this article, we study the existence of solutions in a Banach space of boundary value problems for Caputo-Hadamard fractional differential inclusions of order $r \in (0,1]$. (English)
Keyword: fractional differential inclusion
Keyword: Caputo-Hadamard fractional derivative
Keyword: Mönch’s fixed point theorem
Keyword: Kuratowski measure of noncompactness
MSC: 26A33
MSC: 34A37
idZBL: Zbl 07655745
idMR: MR4529815
DOI: 10.5817/AM2022-4-227
.
Date available: 2022-11-28T12:24:23Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151149
.
Reference: [1] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives.J. Comput. Anal. Appl. 21 (4) (2016), 661–681. MR 3495061
Reference: [2] Agarwal, R.P., Benchohra, M., Seba, D.: On the application of measure of noncom-pactness to the existence of solutions for fractional differential equations.Results Math. 55 (2009), 221–230. MR 2571191, 10.1007/s00025-009-0434-5
Reference: [3] Ahmad, B., Khan, R.A., Sivasundaram, S.: Generalized quasilinearization method for a first order differential equation with integral boundary condition.Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2) (2005), 289–296. Zbl 1084.34007, MR 2170414
Reference: [4] Ahmad, B., Ntouyas, S.K.: Initial value problems for hybrid Hadamard fractional equations.Electron. J. Differential Equ. 2014 (161) (2014), 8 pp. MR 3239404
Reference: [5] Akhmerov, R.R., Kamenski, M.I., Patapov, A.S., Rodkina, A.E., Sadovski, B.N.: Measures of noncompactness and condensing operators (Translated from the 1986 Russian original by A. Iacop), Operator theory: Advances and Applications.ranslated from the 1986 russian original by a. iacop), operator theory: advances and applications, vol. 55, Birkhäuser Verlag, Basel, 1992. MR 1153247
Reference: [6] Aubin, J.P., Cellina, A.: Differential inclusions.Springer-Verlag, Berlin-Heidelberg, New York, 1984. MR 0755330
Reference: [7] Aubin, J.P., Frankowska, H.: Set-valued analysis.Birkhäuser, Boston, 1990. MR 1048347
Reference: [8] Banas, J., Goebel, K.: Measure of noncompactness in Banach spaces.Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 1980. MR 0591679
Reference: [9] Belarbi, A., Benchohra, M.: Existence results for nonlinear boundary-value problems with integral boundary conditions.Electron. J. Differential Equ. 6 (2005), 1–10. MR 2119058
Reference: [10] Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order.Discuss. Math. Differ. Incl. Control Optim. 28 (2008), 147–164. Zbl 1181.26012, MR 2548782, 10.7151/dmdico.1099
Reference: [11] Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative.Topol. Methods Nonlinear Anal. 32 (1) (2008), 115–130. Zbl 1180.26002, MR 2466806
Reference: [12] Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces.Commun. Appl. Anal. 12 (2008), 419–428. MR 2494987
Reference: [13] Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional andhyperbolic partial fractional differential equations in Banach space.PanAmer. Math. J. 20 (2010), 27–37. MR 2760586
Reference: [14] Benchohra, M., Henderson, J., Seba, D.: Boundary value problems for fractional differential inclusions in Banach space.Fract. Differ. Calc. 2 (2012), 99–108. MR 3003005
Reference: [15] Benhamida, W., Hamani, S.: Measure of noncompactness and Caputo-Hadamard fractional differantial equations in Banach spaces.Eur. Bull. Math. 1 (3) (2018), 98–103.
Reference: [16] Benhamida, W., Hamani, S., Henderson, J.: Boundary value problems for Caputo-Hadamard fractional differential equations.Adv. Theor. Nonlinear Anal. Appl. 2 (3) (2018), 138–145. MR 3957191
Reference: [17] Brykalov, S.A.: A second order nonlinear problem with two-point and integral boundary conditions.Georgian Math. J. 1 (1994), 243–249. Zbl 0807.34021, MR 1262564, 10.1515/GMJ.1994.243
Reference: [18] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Composition of Hadamard-type fractional integration operators and the semigroup property.J. Math. Anal. Appl. 269 (2002), 387–400. MR 1907120, 10.1016/S0022-247X(02)00049-5
Reference: [19] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals.J. Math. Anal. Appl. 269 (2002), 1–27. Zbl 0995.26007, MR 1907871, 10.1016/S0022-247X(02)00001-X
Reference: [20] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals.J. Math. Anal. Appl. 270 (2002), 1–15. Zbl 1022.26011, MR 1911748, 10.1016/S0022-247X(02)00066-5
Reference: [21] Deimling, .K.: Multivalued differential equations.Walter De Gruyter, Berlin-New York, 1992. MR 1189795
Reference: [22] Denche, M., Marhoune, A.L.: High order mixed-type differential equations with weighted integral boundary conditions.Electron. J. Differential Equ. 2000 (60) (2000), 1–10. MR 1787207
Reference: [23] Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity.Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (Keil, F., Mackens, W., Voss, H., Werther, J., eds.), Springer-Verlag, Heidelberg, 1999, pp. 217–224. MR 1415870
Reference: [24] Gallardo, J.M.: Second order differential operators with integral boundary conditions and generation of semigroups.Rocky Mountain J. Math. 30 (2000), 1265–1292. MR 1810167
Reference: [25] Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives.Adv. Difference Equ. 2014 (10) (2014), 12 pp. MR 3213915
Reference: [26] Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators.Mech. Systems Signal Processing 5 (1991), 81–88. 10.1016/0888-3270(91)90016-X
Reference: [27] Glockle, W.G., Nonnenmacher, T.F.: A fractional calculus approach of self-similar protein dynamics.Biophys. J. 68 (1995), 46–53. 10.1016/S0006-3495(95)80157-8
Reference: [28] Hadamard, J.: Essai sur l’étude des fonctions donnees par leur development de Taylor.J. Math. Pure Appl. 8 (1892), 101–186.
Reference: [29] Hilfer, R.: Applications of fractional calculus in physics.World Scientific, Singapore, 2000. Zbl 0998.26002, MR 1890104
Reference: [30] Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives.Adv. Difference Equ. 2012 (142) (2012), 8 pp. MR 2992066
Reference: [31] Karakostas, G.L., Tsamatos, P.Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary value problems.Electron. J. Differential Equ. 2002 (30) (2002), 1–17. MR 1907706
Reference: [32] Khan, R. A.: The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions.Electron. J. Qual. Theory Differ. Equ. 2003 (10) (2003), 1–15. Zbl 1055.34033, MR 2039793, 10.14232/ejqtde.2003.1.19
Reference: [33] Kilbas, A.A.: Hadamard-type fractional calculus.J. Korean Math. Soc. 38 (6) (2001), 1191–1204. MR 1858760
Reference: [34] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations.North-Holland Math. Studies, Elsevier Science B.V., Amsterdam, 2006. MR 2218073
Reference: [35] Klimek, M.: Sequential fractional differential equations with Hadamard derivative.Commun. Nonlinear Sci. Numer. Simul. 16 (12) (2011), 4689–4697. MR 2820858, 10.1016/j.cnsns.2011.01.018
Reference: [36] Krall, A.M.: The adjoint of a differential operator with integral boundary conditions.Proc. Amer. Math. Soc. 16 (1965), 738–742. MR 0181794, 10.1090/S0002-9939-1965-0181794-9
Reference: [37] Lomtatidze, A., Malaguti, L.: On a nonlocal boundary value problems for second order nonlinear singular differential equations.Georgian Math. J. 7 (2000), 133–154. MR 1768050, 10.1515/GMJ.2000.133
Reference: [38] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics.Fractals and Fractional Calculus in Continuum Mechanics (Carpinteri, A., Mainardi, F., eds.), Springer-Verlag, Wien, 1997, pp. 291–348. MR 1611587
Reference: [39] Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: A fractional calculus approach.J. Chem. Phys. 103 (1995), 7180–7186. 10.1063/1.470346
Reference: [40] Miller, K.S., Ross, B.: An introduction to the fractional calculus and differential equations.John Wiley, New York, 1993. MR 1219954
Reference: [41] Oldham, K.B., Spanier, J.: The fractional calculus.Academic Press, New York, London, 1974. MR 0361633
Reference: [42] O’Regan, D., Precup, R.: Fixed point theorems for set-valued maps and existence prin-ciples for integral inclusions.J. Math. Anal. Appl. 245 (2000), 594–612. MR 1758558, 10.1006/jmaa.2000.6789
Reference: [43] Thiramanus, P., Ntouyas, S.K., Tariboon, J.: xistence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions.Abstr. Appl. Anal. 2014 (2014), 9 pp., Art. ID 902054. MR 3228094
.

Files

Files Size Format View
ArchMathRetro_058-2022-4_3.pdf 483.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo