Previous |  Up |  Next

Article

Title: A review of Lie superalgebra cohomology for pseudoforms (English)
Author: Cremonini, Carlo Alberto
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 5
Year: 2022
Pages: 269-286
Summary lang: English
.
Category: math
.
Summary: This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of $\mathfrak{osp}(1\mid 4)$ and choose $\mathfrak{osp}(1\mid 2) \times \mathfrak{sp} (2)$ as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10]. (English)
Keyword: Lie superalgebras
Keyword: cohomology
Keyword: pseudoforms
Keyword: integral forms
Keyword: infinite-dimensional representations
MSC: 17B56
MSC: 17B81
idZBL: Zbl 07655748
idMR: MR4529819
DOI: 10.5817/AM2022-5-269
.
Date available: 2022-11-28T12:29:39Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151154
.
Reference: [1] Achúcarro, A., Evans, J.M., Townsend, P.K., Wiltshire, D.L.: Super p-branes.Phys. Lett. B 198 (4) (1987), 441–446. MR 0917433, 10.1016/0370-2693(87)90896-3
Reference: [2] Baranov, M.A., Schwarz, A.S.: Multiloop contribution to string theory.JETP Lett. 42 (1985), 419–421. MR 0875755
Reference: [3] Belopolsky, A.: New geometrical approach to superstrings.[arXiv:hep-th/9703183 [hep-th]].
Reference: [4] Bernstein, I.N., Leites, D.A.: Integral forms and the Stokes formula on supermanifolds.Funkt. Anal. Pril. 11 (1977), 55. MR 0647158
Reference: [5] Cacciatori, S.L., Noja, S., Re, R.: The unifying double complex on supermanifolds.Doc. Math. (2022), 489–518. 10.4171/dm/875
Reference: [6] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective.Singapore: World Scientific 1, 2, 3 (1991), 1375–2162. MR 1120024
Reference: [7] Catenacci, R., Cremonini, C.A., Grassi, P.A., Noja, S.: Cohomology of Lie superalgebras: Forms, integral forms and coset superspaces.[arXiv:2012.05246 [hep-th]]. MR 4037668
Reference: [8] Catenacci, R., Grassi, P.A., Noja, S.: Superstring field theory, superforms and supergeometry.J. Geom. Phys. 148 (2020), 103559. MR 4037668, 10.1016/j.geomphys.2019.103559
Reference: [9] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras.Trans. Amer. Math. Soc. 63 (1948), 85. Zbl 0031.24803, MR 0024908, 10.1090/S0002-9947-1948-0024908-8
Reference: [10] Cremonini, C.A., Grassi, P.A.: Generalised cocycles and super p-branes.[arXiv:2206.03394 [hep-th]].
Reference: [11] Cremonini, C.A., Grassi, P.A.: Pictures from super Chern-Simons theory.JHEP 03 (2020), 043. MR 4090094, 10.1007/JHEP03(2020)043
Reference: [12] Cremonini, C.A., Grassi, P.A.: Super Chern-Simons theory: Batalin-Vilkovisky formalism and $A_\infty $ algebras.Phys. Rev. D 102 (2) (2020), 025009. MR 4134650, 10.1103/PhysRevD.102.025009
Reference: [13] Cremonini, C.A., Grassi, P.A.: Self-dual forms in supergeometry I: The chiral boson.Nuclear Phys. B 973 (2021), 115596. MR 4335819
Reference: [14] Cremonini, C.A., Grassi, P.A., et alii, : In preparation.
Reference: [15] Duff, M.J.: The conformal brane-scan: an update.[arXiv:2112.13784 [hep-th]]. MR 4447865
Reference: [16] Erler, T., Konopka, S., Sachs, I.: Resolving Witten’s superstring field theory.JHEP 12 (2014), 1550018. MR 3214038
Reference: [17] Fiorenza, D., Sati, H., Schreiber, U.: Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields.Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. MR 3305054, 10.1142/S0219887815500188
Reference: [18] Frappat, L., Sorba, P., Sciarrino, A.: Dictionary on Lie Algebras and Superalgebras.Academic Press, 2000. MR 1773773
Reference: [19] Friedan, D., Martinec, E.J., Shenker, S.H.: Conformal invariance, supersymmetry and string theory.Nuclear Phys. B 271 (1986), 93–165. MR 0845945
Reference: [20] Fuks, D.: Cohomology of infinite-dimensional Lie algebras.Springer, New York, 1986. Zbl 0667.17005, MR 0874337
Reference: [21] Hochschild, G., Serre, J.P.: Cohomology of Lie Aalgebras.Ann. of Math. 57 (2) (1953), 591–603. MR 0054581, 10.2307/1969740
Reference: [22] Kac, V.G.: Lie superalgebras.Adv. Math. 26 (1977), 8–96. Zbl 0367.17007, MR 0486011, 10.1016/0001-8708(77)90017-2
Reference: [23] Koszul, J.L.: Homologie et cohomologie des algebres de Lie.Bull. Soc. Math. France 78 (1950), 65–127. MR 0036511, 10.24033/bsmf.1410
Reference: [24] Lebedev, A., Leites, D.A., Shereshevskii, I.: Lie superalgebra structures in cohomology spaces of Lie algebras with coefficients in the adjoint representation.Amer. Math. Soc. Transl. Ser. 2 213 (2005), 157–172. MR 2140720
Reference: [25] Lehrer, G.I., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic supergroup.Commun. Math. Phys. 349 (2) (2017), 661–702. MR 3594367, 10.1007/s00220-016-2731-7
Reference: [26] Lehrer, G.I., Zhang, R.B.: The second fundamental theorem of invariant theory for the orthosymplectic supergroup.Nagoya Math. J. 242 (2021), 52–76. MR 4250733, 10.1017/nmj.2019.25
Reference: [27] Leites, D.A.: Representations of Lie superalgebras.Theor. Math. Phys. 52 (1982), 764–766. MR 0683439, 10.1007/BF01018415
Reference: [28] Manin, Y.I.: Gauge field theory and complex geometry.Springer, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289. MR 0954833
Reference: [29] Noja, S.: On the geometry of forms on supermanifolds.[arXiv:2111.12841 [math.AG]].
Reference: [30] Noja, S., Re, R.: A note on super Koszul complex and the Berezinian.Ann. Mat. Pura Appl. (4) 201 (2022), 403–421. MR 4375015
Reference: [31] Ogievetskii, O.V., Penkov, I.B.: Serre duality for projective supermanifolds.Funct. Anal. Appl. 18 (1984), 68–70. MR 0739100, 10.1007/BF01076371
Reference: [32] Penkov, I.B.: D-modules on supermanifolds.Invent. Math. 71 (1983), 501–512. MR 0695902, 10.1007/BF02095989
Reference: [33] Scheunert, M., Zhang, R.B.: Cohomology of Lie superalgebras and of their generalizations.J. Math. Phys. 39 (1998), 5024–5061. MR 1643330, 10.1063/1.532508
Reference: [34] Su, Y., Zhang, R.B.: Cohomology of Lie superalgebras $sl_{m|n}$ and $osp_{2|2n}$.Proc. London Math. Soc. 94 (2007), 91–136. MR 2293466
Reference: [35] Su, Y., Zhang, R.B.: Mixed cohomology of Lie superalgebras.J. Algebra 549 (2020), 1–29. MR 4050665, 10.1016/j.jalgebra.2019.11.036
Reference: [36] Sullivan, D.: Infinitesimal computations in topology.Publications Mathématiques de l'IHÉS 47 (1977), 269–331. MR 0646078, 10.1007/BF02684341
Reference: [37] Verlinde, E.P., Verlinde, H.L.: Multiloop calculations in covariant superstring theory.Phys. Lett. B 192 (1987), 95–102. MR 0895996, 10.1016/0370-2693(87)91148-8
Reference: [38] Witten, E.: Notes on supermanifolds and integration.Pure Appl. Math. Quart. 15 (1) (2019), 3–56. MR 3946082, 10.4310/PAMQ.2019.v15.n1.a1
.

Files

Files Size Format View
ArchMathRetro_058-2022-5_3.pdf 559.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo