Previous |  Up |  Next

Article

Title: On topologically distinct infinite families of exact Lagrangian fillings (English)
Author: Golovko, Roman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 5
Year: 2022
Pages: 287-293
Summary lang: English
.
Category: math
.
Summary: In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings. (English)
Keyword: polyfillability
Keyword: Legendrian submanifold
Keyword: exact Lagrangian filling
MSC: 53D12
MSC: 53D42
idZBL: Zbl 07655749
idMR: MR4529820
DOI: 10.5817/AM2022-5-287
.
Date available: 2022-11-28T12:31:15Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151155
.
Reference: [1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type.preprint 2021, arXiv:2107.04283.
Reference: [2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type.preprint 2021, arXiv:2101.01943.
Reference: [3] Cao, C., Gallup, N., Hayden, K., Sabloff, J.M.: Topologically distinct Lagrangian and symplectic fillings.Math. Res. Lett. 21 (1) (2014), 85–99. MR 3247041, 10.4310/MRL.2014.v21.n1.a7
Reference: [4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers.preprint 2022, arXiv:2201.03081.
Reference: [5] Casals, R., Gao, H.: Infinitely many Lagrangian fillings.Ann. of Math. 195 (1) (2022), 207–249. MR 4358415, 10.4007/annals.2022.195.1.3
Reference: [6] Casals, R., Ng, L.: Braid Loops with infinite monodromy on the Legendrian contact DGA.J. Topol. 15 (4) (2022), 1927–2016. 10.1112/topo.12264
Reference: [7] Casals, R., Zaslow, E.: Legendrian weaves.preprint 2020, arXiv:2007.04943.
Reference: [8] Chantraine, B.: On Lagrangian concordance of Legendrian knots.Algebr. Geom. Topol. 10 (2010), 63–85. MR 2580429, 10.2140/agt.2010.10.63
Reference: [9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.: Floer theory for Lagrangian cobordisms.J. Differential Geom. 114 (3) (2020), 393–465. MR 4072203, 10.4310/jdg/1583377213
Reference: [10] Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology.J. Symplectic Geom. 14 (3) (2016), 811–901. MR 3548486, 10.4310/JSG.2016.v14.n3.a6
Reference: [11] Ekholm, T.: Morse flow trees and Legendrian contact homology in 1-jet spaces.Geom. Topol. 11 (2007), 1083–1224. MR 2326943, 10.2140/gt.2007.11.1083
Reference: [12] Ekholm, T.: Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms.J. Eur. Math. Soc. 10 (3) (2008), 641–704. MR 2421157, 10.4171/JEMS/126
Reference: [13] Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$.J. Differential Geom. 71 (2005), 85–128. MR 2191769, 10.4310/jdg/1143644313
Reference: [14] Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms.J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. MR 3562353, 10.4171/JEMS/650
Reference: [15] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory.Geom. Funct. Anal. Special Volume 10 (2000), 560–673. MR 1826267
Reference: [16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters.preprint 2020, arXiv:2008.10793.
Reference: [17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings.preprint 2020, arXiv:2009.00499.
Reference: [18] Golovko, R.: A note on the front spinning construction.Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. MR 3194745, 10.1112/blms/bdt091
Reference: [19] Golovko, R.: A note on the infinite number of exact Lagrangian fillings for spherical spuns.Pacific J. Math. 317 (1) (2022), 143–152. MR 4440942, 10.2140/pjm.2022.317.143
Reference: [20] Karlsson, C.: A note on coherent orientations for exact Lagrangian cobordisms.Quantum Topol. 11 (1) (2020), 1–54. MR 4071329, 10.4171/QT/132
Reference: [21] Pan, Y.: The augmentation category map induced by exact Lagrangian cobordisms.Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. MR 3677941, 10.2140/agt.2017.17.1813
.

Files

Files Size Format View
ArchMathRetro_058-2022-5_4.pdf 441.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo