Title:
|
On topologically distinct infinite families of exact Lagrangian fillings (English) |
Author:
|
Golovko, Roman |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
5 |
Year:
|
2022 |
Pages:
|
287-293 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings. (English) |
Keyword:
|
polyfillability |
Keyword:
|
Legendrian submanifold |
Keyword:
|
exact Lagrangian filling |
MSC:
|
53D12 |
MSC:
|
53D42 |
idZBL:
|
Zbl 07655749 |
idMR:
|
MR4529820 |
DOI:
|
10.5817/AM2022-5-287 |
. |
Date available:
|
2022-11-28T12:31:15Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151155 |
. |
Reference:
|
[1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type.preprint 2021, arXiv:2107.04283. |
Reference:
|
[2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type.preprint 2021, arXiv:2101.01943. |
Reference:
|
[3] Cao, C., Gallup, N., Hayden, K., Sabloff, J.M.: Topologically distinct Lagrangian and symplectic fillings.Math. Res. Lett. 21 (1) (2014), 85–99. MR 3247041, 10.4310/MRL.2014.v21.n1.a7 |
Reference:
|
[4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers.preprint 2022, arXiv:2201.03081. |
Reference:
|
[5] Casals, R., Gao, H.: Infinitely many Lagrangian fillings.Ann. of Math. 195 (1) (2022), 207–249. MR 4358415, 10.4007/annals.2022.195.1.3 |
Reference:
|
[6] Casals, R., Ng, L.: Braid Loops with infinite monodromy on the Legendrian contact DGA.J. Topol. 15 (4) (2022), 1927–2016. 10.1112/topo.12264 |
Reference:
|
[7] Casals, R., Zaslow, E.: Legendrian weaves.preprint 2020, arXiv:2007.04943. |
Reference:
|
[8] Chantraine, B.: On Lagrangian concordance of Legendrian knots.Algebr. Geom. Topol. 10 (2010), 63–85. MR 2580429, 10.2140/agt.2010.10.63 |
Reference:
|
[9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.: Floer theory for Lagrangian cobordisms.J. Differential Geom. 114 (3) (2020), 393–465. MR 4072203, 10.4310/jdg/1583377213 |
Reference:
|
[10] Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology.J. Symplectic Geom. 14 (3) (2016), 811–901. MR 3548486, 10.4310/JSG.2016.v14.n3.a6 |
Reference:
|
[11] Ekholm, T.: Morse flow trees and Legendrian contact homology in 1-jet spaces.Geom. Topol. 11 (2007), 1083–1224. MR 2326943, 10.2140/gt.2007.11.1083 |
Reference:
|
[12] Ekholm, T.: Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms.J. Eur. Math. Soc. 10 (3) (2008), 641–704. MR 2421157, 10.4171/JEMS/126 |
Reference:
|
[13] Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$.J. Differential Geom. 71 (2005), 85–128. MR 2191769, 10.4310/jdg/1143644313 |
Reference:
|
[14] Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms.J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. MR 3562353, 10.4171/JEMS/650 |
Reference:
|
[15] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory.Geom. Funct. Anal. Special Volume 10 (2000), 560–673. MR 1826267 |
Reference:
|
[16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters.preprint 2020, arXiv:2008.10793. |
Reference:
|
[17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings.preprint 2020, arXiv:2009.00499. |
Reference:
|
[18] Golovko, R.: A note on the front spinning construction.Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. MR 3194745, 10.1112/blms/bdt091 |
Reference:
|
[19] Golovko, R.: A note on the infinite number of exact Lagrangian fillings for spherical spuns.Pacific J. Math. 317 (1) (2022), 143–152. MR 4440942, 10.2140/pjm.2022.317.143 |
Reference:
|
[20] Karlsson, C.: A note on coherent orientations for exact Lagrangian cobordisms.Quantum Topol. 11 (1) (2020), 1–54. MR 4071329, 10.4171/QT/132 |
Reference:
|
[21] Pan, Y.: The augmentation category map induced by exact Lagrangian cobordisms.Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. MR 3677941, 10.2140/agt.2017.17.1813 |
. |