Previous |  Up |  Next

Article

Title: The common division topology on $\mathbb{N}$ (English)
Author: Alberto-Domínguez, José del Carmen
Author: Acosta, Gerardo
Author: Madriz-Mendoza, Maira
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 3
Year: 2022
Pages: 329-349
Summary lang: English
.
Category: math
.
Summary: A topological space $X$ is totally Brown if for each $n \in \mathbb{N} \setminus \{1\}$ and every nonempty open subsets $U_1,U_2,\ldots,U_n$ of $X$ we have ${\rm cl}_X(U_1) \cap {\rm cl}_X(U_2) \cap \cdots \cap{\rm cl}_X(U_n) \ne \emptyset$. Totally Brown spaces are connected. In this paper we consider a topology $\tau_S$ on the set $\mathbb{N}$ of natural numbers. We then present properties of the topological space $(\mathbb{N},\tau_S)$, some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by P. Szyszkowska and M. Szyszkowski in 2018. (English)
Keyword: arithmetic progression
Keyword: common division topology
Keyword: totally Brown space
Keyword: totally separated space
MSC: 11A41
MSC: 11B05
MSC: 11B25
MSC: 54A05
MSC: 54D05
MSC: 54D10
idZBL: Zbl 07655804
idMR: MR4542793
DOI: 10.14712/1213-7243.2022.022
.
Date available: 2023-02-01T12:07:55Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151480
.
Reference: [1] Alberto-Domínguez J. C., Acosta G., Delgadillo-Piñón G.: Totally Brown subsets of the Golomb space and the Kirch space.Comment. Math. Univ. Carolin. 63 (2022), no. 2, 189–219. MR 4506132
Reference: [2] Apostol T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics, Springer, New York, 1976. MR 0434929
Reference: [3] Aull C. E., Thron W. J.: Separation axioms between $T_0$ and $T_1$.Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 26–37. MR 0138082, 10.1016/S1385-7258(62)50003-6
Reference: [4] Dontchev J.: On superconnected spaces.Serdica 20 (1994), no. 3–4, 345–350. MR 1333356
Reference: [5] Dunham W.: $T_{1/2}$-spaces.Kyungpook Math. J. 17 (1977), no. 2, 161–169. MR 0470934
Reference: [6] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Fine B., Rosenberger G.: Number Theory. An Introduction via the Density of Primes.Birkhäuser/Springer, Cham, 2016. MR 3559913
Reference: [8] Golomb S. W.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. MR 0107622, 10.1080/00029890.1959.11989385
Reference: [9] Golomb S. W.: Arithmetica topologica.General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Praha, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, pages 179–186 (Italian). MR 0154249
Reference: [10] Jha M. N.: Separation axioms between $T_0$ and $T_1$.Progr. Math. (Allahabad) 11 (1977), no. 1–2, 1–4. MR 0458365
Reference: [11] Kirch A. M.: A countable, connected, locally connected Hausdorff space.Amer. Math. Monthly 76 (1969), 169–171. MR 0239563, 10.1080/00029890.1969.12000163
Reference: [12] Levine N.: Generalized closed sets in topology.Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96. MR 0305341, 10.1007/BF02843888
Reference: [13] Nanda S., Panda H. K.: The fundamental group of principal superconnected spaces.Rend. Mat. (6) 9 (1976), no. 4, 657–664. MR 0434295
Reference: [14] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, New York, 1995. Zbl 0386.54001, MR 1382863
Reference: [15] Szczuka P.: Connections between connected topological spaces on the set of positive integers.Cent. Eur. J. Math. 11 (2013), no. 5, 876–881. MR 3032336
Reference: [16] Szczuka P.: The closures of arithmetic progressions in the common division topology on the set of positive integers.Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014. MR 3188461
Reference: [17] Szczuka P.: Properties of the division topology on the set of positive integers.Int. J. Number Theory 12 (2016), no. 3, 775–785. MR 3477420, 10.1142/S1793042116500500
Reference: [18] Szyszkowska P., Szyszkowski M.: Properties of the common division topology on the set of positive integers.J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98. MR 3772612
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-3_6.pdf 278.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo