Previous |  Up |  Next

Article

Title: Hyperspace selections avoiding points (English)
Author: Gutev, Valentin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 3
Year: 2022
Pages: 351-364
Summary lang: English
.
Category: math
.
Summary: We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces. (English)
Keyword: Vietoris topology
Keyword: continuous selection
Keyword: weak selection
Keyword: weakly orderable space
Keyword: weakly cyclically orderable space
MSC: 54B20
MSC: 54C65
MSC: 54D05
MSC: 54D30
MSC: 54F05
MSC: 54F65
idZBL: Zbl 07655805
idMR: MR4542794
DOI: 10.14712/1213-7243.2022.026
.
Date available: 2023-02-01T12:10:06Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151481
.
Reference: [1] Brouwer A. E.: A characterization of connected (weakly) orderable spaces.Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 10/71 (1971), 7 pages.
Reference: [2] Brouwer A. E.: On the topological characterization of the real line.Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 8/71 (1971), 6 pages.
Reference: [3] Buhagiar D., Gutev V.: Selections and deleted symmetric products.Tsukuba J. Math. 41 (2017), no. 1, 1–20. MR 3705772, 10.21099/tkbjm/1506353557
Reference: [4] Čech E.: Topological Spaces.Publishing House of the Czechoslovak Academy of Sciences, Praha, Interscience Publishers John Wiley & Sons, London, 1966. MR 0211373
Reference: [5] Čoban M. M.: Many-valued mappings and Borel sets.Trans. Mosc. Math. Soc. 22 (1970), 258–280. MR 0372812
Reference: [6] van Dalen J., Wattel E.: A topological characterization of ordered spaces.General Topology and Appl. 3 (1973), 347–354. MR 0341431, 10.1016/0016-660X(73)90022-6
Reference: [7] Duda R.: On ordered topological spaces.Fund. Math. 63 (1968), 295–309. MR 0235524, 10.4064/fm-63-3-295-309
Reference: [8] Eilenberg S.: Ordered topological spaces.Amer. J. Math. 63 (1941), 39–45. MR 0003201, 10.2307/2371274
Reference: [9] Engelking R., Heath R. W., Michael E.: Topological well-ordering and continuous selections.Invent. Math. 6 (1968), 150–158. MR 0244959, 10.1007/BF01425452
Reference: [10] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.: Extreme selections for hyperspaces of topological spaces.Proc. of the International Conf. on Topology and Its Applications, Yokohama, 1999, Topology Appl. 122 (2002), no. 1–2, 157–181. MR 1919299, 10.1016/S0166-8641(01)00141-9
Reference: [11] Gutev V.: Weak orderability of second countable spaces.Fund. Math. 196 (2007), no. 3, 275–287. MR 2353859, 10.4064/fm196-3-4
Reference: [12] Gutev V.: Selections and hyperspaces.Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, pages 535–579. MR 3205492
Reference: [13] Gutev V.: Selections and approaching points in products.Comment. Math. Univ. Carolin. 57 (2016), no. 1, 89–95. MR 3478342
Reference: [14] Gutev V.: Scattered spaces and selections.Topology Appl. 231 (2017), 306–315. MR 3712970, 10.1016/j.topol.2017.09.023
Reference: [15] Gutev V., Nogura T.: Selections and order-like relations.Appl. Gen. Topol. 2 (2001), no. 2, 205–218. MR 1890037, 10.4995/agt.2001.2150
Reference: [16] Gutev V., Nogura T.: Fell continuous selections and topologically well-orderable spaces.Mathematika 51 (2004), no. 1–2, 163–169. MR 2220220, 10.1112/S002557930001559X
Reference: [17] Gutev V., Nogura T.: Set-maximal selections.Topology Appl. 157 (2010), no. 1, 53–61. MR 2556079, 10.1016/j.topol.2009.04.050
Reference: [18] Gutev V., Nogura T.: Weak orderability of topological spaces.Topology Appl. 157 (2010), no. 8, 1249–1274. MR 2610437
Reference: [19] Hocking J. G., Young G. S.: Topology.Addison–Wesley Publishing, London, 1961. Zbl 0718.55001, MR 0125557
Reference: [20] Huntington E. V.: A set of independent postulates for cyclic order.Proc. Natl. Acad. Sci. USA 2 (1916), 630–631. 10.1073/pnas.2.11.630
Reference: [21] Huntington E. V.: Sets of completely independent postulates for cyclic order.Proc. Natl. Acad. Sci. USA 10 (1924), 74–78. 10.1073/pnas.10.2.74
Reference: [22] Kok H.: Connected Orderable Spaces.Mathematical Centre Tracts, 49, Mathematisch Centrum, Amsterdam, 1973. MR 0339099
Reference: [23] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4
Reference: [24] van Mill J., Wattel E.: Selections and orderability.Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. MR 0627702, 10.1090/S0002-9939-1981-0627702-4
Reference: [25] Nadler S. B., Jr.: Continuum Theory.An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0819.54015, MR 1192552
Reference: [26] Nogura T., Shakhmatov D.: Characterizations of intervals via continuous selections.Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317–328. MR 1617361, 10.1007/BF02977032
Reference: [27] Whyburn G. T.: Concerning the cut points of continua.Trans. Amer. Math. Soc. 30 (1928), no. 3, 597–609. MR 1501448, 10.1090/S0002-9947-1928-1501448-5
Reference: [28] Willard S.: General Topology.Addison–Wesley Publishing, London, 1970. Zbl 1052.54001, MR 0264581
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-3_7.pdf 236.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo