Title:
|
Spectral estimates of vibration frequencies of anisotropic beams (English) |
Author:
|
Sabatini, Luca |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
15-33 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics. (English) |
Keyword:
|
theory of beams |
Keyword:
|
deformation of cross section |
Keyword:
|
spectral geometry |
Keyword:
|
comparison of spectra |
MSC:
|
35P15 |
MSC:
|
47A75 |
MSC:
|
74B05 |
MSC:
|
74K10 |
idZBL:
|
Zbl 07655737 |
idMR:
|
MR4541073 |
DOI:
|
10.21136/AM.2021.0057-21 |
. |
Date available:
|
2023-02-03T11:00:50Z |
Last updated:
|
2025-03-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151494 |
. |
Reference:
|
[1] Bordoni, M.: An estimate for finite sums of eigenvalues of fiber spaces.C. R. Acad. Sci., Paris Sér. I 315 (1992), 1079-1083. Zbl 0761.53019, MR 1191493 |
Reference:
|
[2] Bordoni, M.: Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds.Math. Ann. 298 (1994), 693-718. Zbl 0791.58094, MR 1268600, 10.1007/BF01459757 |
Reference:
|
[3] Bordoni, M.: Spectral comparison between Dirac and Schrödinger operators.Rend. Mat. Appl., VII. Ser. 18 (1998), 181-196. Zbl 0919.58064, MR 1638207 |
Reference:
|
[4] Brézis, H.: Analyse fonctionnelle. Théorie et applications.Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983), French. Zbl 0511.46001, MR 0697382 |
Reference:
|
[5] Picone, M., Fichera, G.: Trattato di analisi matematica.Tumminelli, Roma (1954), Italian. Zbl 0058.03803, MR 0106814 |
Reference:
|
[6] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I: Functional Analysis.Academic Press, New York (1972). Zbl 0242.46001, MR 0493419, 10.1016/b978-0-12-585001-8.x5001-6 |
Reference:
|
[7] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness.Academic Press, New York (1975). Zbl 0308.47002, MR 0493420 |
Reference:
|
[8] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators.Academic Press, New York (1978). Zbl 0401.47001, MR 0493421 |
Reference:
|
[9] Sabatini, L.: Estimation of vibration frequencies of linear elastic membranes.Appl. Math., Praha 63 (2018), 37-53. Zbl 06861541, MR 3763981, 10.21136/AM.2018.0316-16 |
Reference:
|
[10] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 27 (2019), 179-211. MR 3956406, 10.2478/auom-2019-0027 |
Reference:
|
[11] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary II.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 165-179. MR 4089855, 10.2478/auom-2020-0012 |
Reference:
|
[12] Sabatini, L.: A linear theory of beams with deformable cross section.J. Math. Model. 9 (2021), 465-483. MR 4275997, 10.22124/jmm.2021.17932.1548 |
Reference:
|
[13] Tikhonov, A. N., Samarskij, A. A.: Equazioni della fisica matematica.Mir, Roma (1981), Italian. Zbl 0489.35001 |
. |