Previous |  Up |  Next

Article

Title: Spectral estimates of vibration frequencies of anisotropic beams (English)
Author: Sabatini, Luca
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 1
Year: 2023
Pages: 15-33
Summary lang: English
.
Category: math
.
Summary: The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics. (English)
Keyword: theory of beams
Keyword: deformation of cross section
Keyword: spectral geometry
Keyword: comparison of spectra
MSC: 35P15
MSC: 47A75
MSC: 74B05
MSC: 74K10
idZBL: Zbl 07655737
idMR: MR4541073
DOI: 10.21136/AM.2021.0057-21
.
Date available: 2023-02-03T11:00:50Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151494
.
Reference: [1] Bordoni, M.: An estimate for finite sums of eigenvalues of fiber spaces.C. R. Acad. Sci., Paris Sér. I 315 (1992), 1079-1083. Zbl 0761.53019, MR 1191493
Reference: [2] Bordoni, M.: Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds.Math. Ann. 298 (1994), 693-718. Zbl 0791.58094, MR 1268600, 10.1007/BF01459757
Reference: [3] Bordoni, M.: Spectral comparison between Dirac and Schrödinger operators.Rend. Mat. Appl., VII. Ser. 18 (1998), 181-196. Zbl 0919.58064, MR 1638207
Reference: [4] Brézis, H.: Analyse fonctionnelle. Théorie et applications.Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983), French. Zbl 0511.46001, MR 0697382
Reference: [5] Picone, M., Fichera, G.: Trattato di analisi matematica.Tumminelli, Roma (1954), Italian. Zbl 0058.03803, MR 0106814
Reference: [6] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I: Functional Analysis.Academic Press, New York (1972). Zbl 0242.46001, MR 0493419, 10.1016/b978-0-12-585001-8.x5001-6
Reference: [7] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness.Academic Press, New York (1975). Zbl 0308.47002, MR 0493420
Reference: [8] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators.Academic Press, New York (1978). Zbl 0401.47001, MR 0493421
Reference: [9] Sabatini, L.: Estimation of vibration frequencies of linear elastic membranes.Appl. Math., Praha 63 (2018), 37-53. Zbl 06861541, MR 3763981, 10.21136/AM.2018.0316-16
Reference: [10] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 27 (2019), 179-211. MR 3956406, 10.2478/auom-2019-0027
Reference: [11] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary II.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 165-179. MR 4089855, 10.2478/auom-2020-0012
Reference: [12] Sabatini, L.: A linear theory of beams with deformable cross section.J. Math. Model. 9 (2021), 465-483. MR 4275997, 10.22124/jmm.2021.17932.1548
Reference: [13] Tikhonov, A. N., Samarskij, A. A.: Equazioni della fisica matematica.Mir, Roma (1981), Italian. Zbl 0489.35001
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo