Previous |  Up |  Next

Article

Title: On the Maxwell-wave equation coupling problem and its explicit finite-element solution (English)
Author: Beilina, Larisa
Author: Ruas, Vitoriano
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 1
Year: 2023
Pages: 75-98
Summary lang: English
.
Category: math
.
Summary: It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification. (English)
Keyword: constant magnetic permeability
Keyword: dielectric permittivity
Keyword: explicit scheme
Keyword: finite element
Keyword: mass lumping
Keyword: Maxwell-wave equation
MSC: 65M12
MSC: 65M22
MSC: 65M60
idZBL: Zbl 07655740
idMR: MR4541076
DOI: 10.21136/AM.2022.0210-21
.
Date available: 2023-02-03T11:03:34Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151497
.
Reference: [1] Ammari, H., Hamdache, K.: Global existence and regularity of solutions to a system of nonlinear Maxwell equations.J. Math. Anal. Appl. 286 (2003), 51-63. Zbl 1039.35122, MR 2009617, 10.1016/S0022-247X(03)00415-3
Reference: [2] Asadzadeh, M., Beilina, L.: On stabilized $P_1$ finite element approximation for time harmonic Maxwell's equations.Available at https://arxiv.org/abs/1906.02089v1 (2019), 25 pages. MR 4141133
Reference: [3] Asadzadeh, M., Beilina, L.: Convergence of stabilized $P_1$ finite element scheme for time harmonic Maxwell's equations.Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43. Zbl 1446.65158, MR 4141133, 10.1007/978-3-030-48634-1_4
Reference: [4] Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations.J. Comput. Phys. 109 (1993), 222-237 \99999DOI99999 10.1006/jcph.1993.1214 . Zbl 0795.65087, MR 1253460, 10.1006/jcph.1993.1214
Reference: [5] Badia, S., Codina, R.: A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions.SIAM J. Numer. Anal. 50 (2012), 398-417. Zbl 1247.78034, MR 2914268, 10.1137/110835360
Reference: [6] Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system.Cent. Eur. J. Math. 11 (2013), 702-733. Zbl 1267.78044, MR 3015394, 10.2478/s11533-013-0202-3
Reference: [7] Beilina, L.: WavES (Wave Equations Solutions).Available at https://waves24.com/.
Reference: [8] Beilina, L., Cristofol, M., Niinimäki, K.: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations.Inverse Probl. Imaging 9 (2015), 1-25. Zbl 1308.35296, MR 3305884, 10.3934/ipi.2015.9.1
Reference: [9] Beilina, L., Grote, M. J.: Adaptive hybrid finite element/difference method for Maxwell's equations.TWMS J. Pure Appl. Math. 1 (2010), 176-197. Zbl 1236.78028, MR 2766623
Reference: [10] Beilina, L., Ruas, V.: An explicit $P_1$ finite-element scheme for Maxwell's equations with constant permittivity in a boundary neighborhood.Available at https://arxiv.org/abs/1808.10720v4 (2020), 38 pages.
Reference: [11] Beilina, L., Ruas, V.: Convergence of explicit $P_1$ finite-element solutions to Maxwell's equations.Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103. Zbl 07240119, MR 4141136, 10.1007/978-3-030-48634-1_7
Reference: [12] Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B.: Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements.J. Comput. Appl. Math. 289 (2015), 371-391. Zbl 1332.78020, MR 3350783, 10.1016/j.cam.2014.11.055
Reference: [13] Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements.Electromagnetism, Vol. 2 Academic Press, New York (1998). Zbl 0945.78001, MR 1488417
Reference: [14] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15. Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1
Reference: [15] Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V.: Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow.J. Comput. Appl. Math. 234 (2010), 2562-2577. Zbl 1425.76025, MR 2645211, 10.1016/j.cam.2010.03.025
Reference: [16] Chen, C., Wahl, W. von.: Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung.J. Reine Angew. Math. 337 (1982), 77-112 German \99999DOI99999 10.1515/crll.1982.337.77 . Zbl 0486.35053, MR 0676043
Reference: [17] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [18] P. Ciarlet, Jr.: Augmented formulations for solving Maxwell equations.Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. Zbl 1063.78018, MR 2105182, 10.1016/j.cma.2004.05.021
Reference: [19] P. Ciarlet, Jr., E. Jamelot: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries.J. Comput. Phys. 226 (2007), 1122-1135. Zbl 1128.78002, MR 2356870, 10.1016/j.jcp.2007.05.029
Reference: [20] Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell's equations.Numer. Methods Partial Differ. Equations 14 (1998), 63-88. Zbl 0891.65130, MR 1601785, 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J
Reference: [21] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains: A rehabilitation of nodal finite elements.Numer. Math. 93 (2002), 239-277. Zbl 1019.78009, MR 1941397, 10.1007/s002110100388
Reference: [22] Elmkies, A., Joly, P.: Edge finite elements and mass lumping for Maxwell's equations: The 2D case.C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. Zbl 0877.65081, MR 1456303, 10.1016/S0764-4442(99)80415-7
Reference: [23] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [24] Jamelot, E.: Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale.L'École Polytechnique, Paris (2005), French. Zbl 1185.65006
Reference: [25] Joly, P.: Variational methods for time-dependent wave propagation problems.Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. Zbl 1049.78028, MR 2032871, 10.1007/978-3-642-55483-4_6
Reference: [26] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). Zbl 0708.65106, MR 1066462
Reference: [27] Malmerg, J. B.: A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system.Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53. Zbl 1319.78014, MR 3343199, 10.1007/978-3-319-12499-5_3
Reference: [28] Malmberg, J. B.: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis.University of Gothenburg, Gothenburg (2017).
Reference: [29] Malmberg, J. B., Beilina, L.: Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem.AIP Conf. Proc. 1863 (2017), Article ID 370002. 10.1063/1.4992549
Reference: [30] Malmberg, J. B., Beilina, L.: An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations.Appl. Math. Inf. Sci. 12 (2018), 1-19. MR 3747879, 10.18576/amis/120101
Reference: [31] Monk, P.: Finite Element Methods for Maxwell's Equations.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). Zbl 1024.78009, MR 2059447, 10.1093/acprof:oso/9780198508885.001.0001
Reference: [32] Nedelec, J.-C.: Mixed finite elements in $\mathbb R^3$.Numer. Math. 35 (1980), 315-341. Zbl 0419.65069, MR 0592160, 10.1007/BF01396415
Reference: [33] Patsakos, G.: Equivalence of the Maxwell and wave equations.Am. J. Phys. 47 (1979), 698-699. 10.1119/1.11745
Reference: [34] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method.SIAM J. Sci. Comput. 36 (2014), B273--B293. Zbl 1410.78018, MR 3199422, 10.1137/130924962
Reference: [35] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm.SIAM J. Imaging Sci. 8 (2015), 757-786. Zbl 1432.35259, MR 3327354, 10.1137/140972469
Reference: [36] Wang, L.: On Korn's inequality.J. Comput. Math. 21 (2003), 321-324. Zbl 1151.74311, MR 1978636
Reference: [37] Zuo, L., Hou, Y.: Numerical analysis for the mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition.Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030. Zbl 1329.76194, MR 3343597, 10.1002/num.21933
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo