Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
constant magnetic permeability; dielectric permittivity; explicit scheme; finite element; mass lumping; Maxwell-wave equation
Summary:
It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.
References:
[1] Ammari, H., Hamdache, K.: Global existence and regularity of solutions to a system of nonlinear Maxwell equations. J. Math. Anal. Appl. 286 (2003), 51-63. DOI 10.1016/S0022-247X(03)00415-3 | MR 2009617 | Zbl 1039.35122
[2] Asadzadeh, M., Beilina, L.: On stabilized $P_1$ finite element approximation for time harmonic Maxwell's equations. Available at https://arxiv.org/abs/1906.02089v1 (2019), 25 pages. MR 4141133
[3] Asadzadeh, M., Beilina, L.: Convergence of stabilized $P_1$ finite element scheme for time harmonic Maxwell's equations. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43. DOI 10.1007/978-3-030-48634-1_4 | MR 4141133 | Zbl 1446.65158
[4] Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993), 222-237 \99999DOI99999 10.1006/jcph.1993.1214 . DOI 10.1006/jcph.1993.1214 | MR 1253460 | Zbl 0795.65087
[5] Badia, S., Codina, R.: A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions. SIAM J. Numer. Anal. 50 (2012), 398-417. DOI 10.1137/110835360 | MR 2914268 | Zbl 1247.78034
[6] Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system. Cent. Eur. J. Math. 11 (2013), 702-733. DOI 10.2478/s11533-013-0202-3 | MR 3015394 | Zbl 1267.78044
[7] Beilina, L.: WavES (Wave Equations Solutions). Available at https://waves24.com/
[8] Beilina, L., Cristofol, M., Niinimäki, K.: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Probl. Imaging 9 (2015), 1-25. DOI 10.3934/ipi.2015.9.1 | MR 3305884 | Zbl 1308.35296
[9] Beilina, L., Grote, M. J.: Adaptive hybrid finite element/difference method for Maxwell's equations. TWMS J. Pure Appl. Math. 1 (2010), 176-197. MR 2766623 | Zbl 1236.78028
[10] Beilina, L., Ruas, V.: An explicit $P_1$ finite-element scheme for Maxwell's equations with constant permittivity in a boundary neighborhood. Available at https://arxiv.org/abs/1808.10720v4 (2020), 38 pages.
[11] Beilina, L., Ruas, V.: Convergence of explicit $P_1$ finite-element solutions to Maxwell's equations. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103. DOI 10.1007/978-3-030-48634-1_7 | MR 4141136 | Zbl 07240119
[12] Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B.: Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements. J. Comput. Appl. Math. 289 (2015), 371-391. DOI 10.1016/j.cam.2014.11.055 | MR 3350783 | Zbl 1332.78020
[13] Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements. Electromagnetism, Vol. 2 Academic Press, New York (1998). MR 1488417 | Zbl 0945.78001
[14] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15. Springer, New York (1991). DOI 10.1007/978-1-4612-3172-1 | MR 1115205 | Zbl 0788.73002
[15] Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V.: Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow. J. Comput. Appl. Math. 234 (2010), 2562-2577. DOI 10.1016/j.cam.2010.03.025 | MR 2645211 | Zbl 1425.76025
[16] Chen, C., Wahl, W. von.: Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung. J. Reine Angew. Math. 337 (1982), 77-112 German \99999DOI99999 10.1515/crll.1982.337.77 . MR 0676043 | Zbl 0486.35053
[17] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[18] P. Ciarlet, Jr.: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. DOI 10.1016/j.cma.2004.05.021 | MR 2105182 | Zbl 1063.78018
[19] P. Ciarlet, Jr., E. Jamelot: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries. J. Comput. Phys. 226 (2007), 1122-1135. DOI 10.1016/j.jcp.2007.05.029 | MR 2356870 | Zbl 1128.78002
[20] Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell's equations. Numer. Methods Partial Differ. Equations 14 (1998), 63-88. DOI 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J | MR 1601785 | Zbl 0891.65130
[21] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains: A rehabilitation of nodal finite elements. Numer. Math. 93 (2002), 239-277. DOI 10.1007/s002110100388 | MR 1941397 | Zbl 1019.78009
[22] Elmkies, A., Joly, P.: Edge finite elements and mass lumping for Maxwell's equations: The 2D case. C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. DOI 10.1016/S0764-4442(99)80415-7 | MR 1456303 | Zbl 0877.65081
[23] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics 5. Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 0851383 | Zbl 0585.65077
[24] Jamelot, E.: Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale. L'École Polytechnique, Paris (2005), French. Zbl 1185.65006
[25] Joly, P.: Variational methods for time-dependent wave propagation problems. Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. DOI 10.1007/978-3-642-55483-4_6 | MR 2032871 | Zbl 1049.78028
[26] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). MR 1066462 | Zbl 0708.65106
[27] Malmerg, J. B.: A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system. Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53. DOI 10.1007/978-3-319-12499-5_3 | MR 3343199 | Zbl 1319.78014
[28] Malmberg, J. B.: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis. University of Gothenburg, Gothenburg (2017).
[29] Malmberg, J. B., Beilina, L.: Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem. AIP Conf. Proc. 1863 (2017), Article ID 370002. DOI 10.1063/1.4992549
[30] Malmberg, J. B., Beilina, L.: An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations. Appl. Math. Inf. Sci. 12 (2018), 1-19. DOI 10.18576/amis/120101 | MR 3747879
[31] Monk, P.: Finite Element Methods for Maxwell's Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). DOI 10.1093/acprof:oso/9780198508885.001.0001 | MR 2059447 | Zbl 1024.78009
[32] Nedelec, J.-C.: Mixed finite elements in $\mathbb R^3$. Numer. Math. 35 (1980), 315-341. DOI 10.1007/BF01396415 | MR 0592160 | Zbl 0419.65069
[33] Patsakos, G.: Equivalence of the Maxwell and wave equations. Am. J. Phys. 47 (1979), 698-699. DOI 10.1119/1.11745
[34] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method. SIAM J. Sci. Comput. 36 (2014), B273--B293. DOI 10.1137/130924962 | MR 3199422 | Zbl 1410.78018
[35] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm. SIAM J. Imaging Sci. 8 (2015), 757-786. DOI 10.1137/140972469 | MR 3327354 | Zbl 1432.35259
[36] Wang, L.: On Korn's inequality. J. Comput. Math. 21 (2003), 321-324. MR 1978636 | Zbl 1151.74311
[37] Zuo, L., Hou, Y.: Numerical analysis for the mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030. DOI 10.1002/num.21933 | MR 3343597 | Zbl 1329.76194
Partner of
EuDML logo