Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
Summary:
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
References:
[1] Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203 (2012), 499-527. DOI 10.1007/s00205-011-0454-7 | MR 2885568 | Zbl 1290.76165
[2] Asano, K.: On the incompressible limit of the compressible Euler equation. Japan J. Appl. Math. 4 (1987), 455-488. DOI 10.1007/BF03167815 | MR 0925620 | Zbl 0638.35012
[3] Audiard, C.: Dispersive smoothing for the Euler-Korteweg model. SIAM J. Math. Anal. 44 (2012), 3018-3040. DOI 10.1137/11083174X | MR 3023402 | Zbl 1255.35179
[4] Audiard, C., Haspot, B.: Global well-posedness of the Euler-Korteweg system for small irrotational data. Commun. Math. Phys. 351 (2017), 201-247. DOI 10.1007/s00220-017-2843-8 | MR 3613503 | Zbl 1369.35047
[5] Benzoni-Gavage, S., Danchin, R., Descombes, S.: Well-posedness of one-dimensional Korteweg models. Electron. J. Differ. Equ. 2006 (2006), Article ID 59, 35 pages. MR 2226932 | Zbl 1114.76058
[6] Benzoni-Gavage, S., Danchin, R., Descombes, S.: On the well-posedness for the Euler-Korteweg model in several space dimensions. Indiana Univ. Math. J. 56 (2007), 1499-1579. DOI 10.1512/iumj.2007.56.2974 | MR 2354691 | Zbl 1125.76060
[7] Brenier, Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equations 25 (2000), 737-754. DOI 10.1080/03605300008821529 | MR 1748352 | Zbl 0970.35110
[8] Bresch, D., Desjardins, B., Ducomet, B.: Quasi-neutral limit for a viscous capillary model of plasma. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 1-9. DOI 10.1016/j.anihpc.2004.02.001 | MR 2114408 | Zbl 1062.35061
[9] Carles, R., Danchin, R., Saut, J.-C.: Madelung, Gross-Pitaevskii and Korteveg. Nonlinearity 25 (2012), 2843-2873. DOI 10.1088/0951-7715/25/10/2843 | MR 2979973 | Zbl 1251.35142
[10] Colombo, R. M., Guerra, G., Schleper, V.: The compressible to incompressible limit of one dimensional Euler equations: The non smooth case. Arch. Ration. Mech. Anal. 219 (2016), 701-718. DOI 10.1007/s00205-015-0904-8 | MR 3437860 | Zbl 1333.35169
[11] Donatelli, D., Feireisl, E., Marcati, P.: Well/ill posedness for the Euler-Korteweg-Poisson system and related problems. Commun. Partial Differ. Equations 40 (2015), 1314-1335. DOI 10.1080/03605302.2014.972517 | MR 3341206 | Zbl 1326.35253
[12] Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system. Commun. Math. Phys. 321 (2013), 605-628. DOI 10.1007/s00220-013-1691-4 | MR 3070031 | Zbl 1291.35178
[13] Hmidi, T.: The low Mach number limit for the isentropic Euler system with axisymmetric initial data. J. Inst. Math. Jussieu 12 (2013), 335-389. DOI 10.1017/S1474748012000746 | MR 3028789 | Zbl 1280.35110
[14] Hoefer, M. A., Ablowitz, M. J., Coddington, I., Cornell, E. A., Engels, P., Schweikhard, V.: Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys. Rev. A 74 (2006), Article ID 023623. DOI 10.1103/PhysRevA.74.023623
[15] Iguchi, T.: The incompressible limit and the initial layer of the compressible Euler equation in $\mathbb{R}^{n}_+$. Math. Methods Appl. Sci. 20 (1997), 945-958. DOI 10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T | MR 1458527 | Zbl 0884.35127
[16] Jamet, D., Torres, D., Brackbill, J. U.: On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method. J. Comput. Phys. 182 (2002), 262-276. DOI 10.1006/jcph.2002.7165 | Zbl 1058.76597
[17] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations. SIAM J. Math. Anal. 48 (2016), 302-319. DOI 10.1137/15M102842X | MR 3452249 | Zbl 1338.35367
[18] Jüngel, A., Lin, C.-K., Wu, K.-C.: An asymptotic limit of a Navier-Stokes system with capillary effects. Commun. Math. Phys. 329 (2014), 725-744. DOI 10.1007/s00220-014-1961-9 | MR 3210149 | Zbl 1297.35169
[19] Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981), 481-524. DOI 10.1002/cpa.3160340405 | MR 0615627 | Zbl 0476.76068
[20] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., IX. Sér. 77 (1998), 585-627. DOI 10.1016/S0021-7824(98)80139-6 | MR 1628173 | Zbl 0909.35101
[21] Liu, J., Schneider, J. B., Gollub, J. P.: Three-dimensional instabilities of film flows. Phys. Fluids 7 (1995), 55-67. DOI 10.1063/1.868782 | MR 1307112
[22] Noble, P., Vila, J.-P.: Stability theory for difference approximations of Euler-Korteweg equations and application to thin film flows. SIAM J. Numer. Anal. 52 (2014), 2770-2791. DOI 10.1137/130918009 | MR 3280101 | Zbl 1309.76142
[23] Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986), 323-331. DOI 10.1215/kjm/1250520925 | MR 0849223 | Zbl 0618.76074
[24] Wang, D., Yu, C.: Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech. 16 (2014), 771-786. DOI 10.1007/s00021-014-0185-2 | MR 3267548 | Zbl 1309.35094
[25] Yong, W.-A.: A note on the zero Mach number limit of compressible Euler equations. Proc. Am. Math. Soc. 133 (2005), 3079-3085. DOI 10.1090/S0002-9939-05-08077-9 | MR 2159788 | Zbl 1072.35563
Partner of
EuDML logo