Previous |  Up |  Next

Article

Title: On relative pure cyclic fields with power integral bases (English)
Author: Sahmoudi, Mohammed
Author: Charkani, Mohamed E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 1
Year: 2023
Pages: 117-128
Summary lang: English
.
Category: math
.
Summary: Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^{p}-\beta $ of prime degree belonging to $\mathfrak {o}_{K}[X]$ ($\mathfrak {o}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_{L/\mathbb {Q}}$. (English)
Keyword: discrete valuation ring
Keyword: Dedekind ring
Keyword: monogenity
Keyword: relative integral basis
Keyword: nonic field
MSC: 11R04
MSC: 11R16
MSC: 11R21
MSC: 11Rxx
MSC: 11Y40
idZBL: Zbl 07655817
idMR: MR4536314
DOI: 10.21136/MB.2022.0142-21
.
Date available: 2023-02-03T11:24:22Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151531
.
Reference: [1] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Massachusetts (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493621
Reference: [2] Cassels, J. W. S., (eds.), A. Fröhlich: Algebraic Number Theory.Academic Press, London (1967). Zbl 0153.07403, MR 0215665
Reference: [3] Cassou-Noguès, P., Taylor, M. J.: A note on elliptic curves and the monogeneity of rings of integers.J. Lond. Math. Soc., II. Ser. 37 (1988), 63-72. Zbl 0639.12001, MR 0921747, 10.1112/jlms/s2-37.121.63
Reference: [4] Cassou-Noguès, P., Taylor, M. J.: Unités modulaires et monogénéité d'anneaux d'entiers.Séminaire de théorie des nombres, Paris 1986-87 Progress in Mathematics 75. Birkhäuser, Boston (1988), 35-64 French. Zbl 0714.11078, MR 0990505
Reference: [5] Charkani, M. E., Deajim, A.: Generating a power basis over a Dedekind ring.J. Number Theory 132 (2012), 2267-2276. Zbl 1293.11101, MR 2944754, 10.1016/j.jnt.2012.04.006
Reference: [6] Charkani, M. E., Deajim, A.: Relative index extensions of Dedekind rings.JP J. Algebra Number Theory Appl. 27 (2012), 73-84. Zbl 1368.11111, MR 3086201
Reference: [7] Charkani, M. E., Lahlou, O.: On Dedekind's criterion and monogenicity over Dedekind rings.Int. J. Math. Math. Sci. 2003 (2003), 4455-4464. Zbl 1066.11046, MR 2040142, 10.1155/S0161171203211534
Reference: [8] Charkani, M. E., Sahmoudi, M.: Sextic extension with cubic subfield.JP J. Algebra Number Theory Appl. 34 (2014), 139-150. Zbl 1307.11112
Reference: [9] Charkani, M. E., Sahmoudi, M., Soullami, A.: Tower index formula and monogenecity.Commun. Algebra 49 (2021), 2469-2475. Zbl 1470.11268, MR 4255019, 10.1080/00927872.2021.1872590
Reference: [10] Cohen, H.: A Course in Computational Algebraic Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9
Reference: [11] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen.Abh. Akad. Wiss. Gött., Math-Phys. Kl., 3. Folge 23 (1878), 3-38 German.
Reference: [12] Fröhlich, A., Taylor, M. J.: Algebraic Number Theory.Cambridge Studies in Advanced Mathematics 27. Cambridge University Press, Cambridge (1993). Zbl 0744.11001, MR 1215934, 10.1017/CBO9781139172165
Reference: [13] Gaál, I., Remete, L.: Power integral bases in cubic and quartic extensions of real quadratic fields.Acta Sci. Math. 85 (2019), 413-429. Zbl 1449.11104, MR 4154697, 10.14232/actasm-018-080-z
Reference: [14] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. Zbl 1363.11094, MR 3443598
Reference: [15] Ichimura, H.: On power integral bases of unramified cyclic extensions of prime degree.J. Algebra 235 (2001), 104-112. Zbl 0972.11101, MR 1807657, 10.1006/jabr.2000.8467
Reference: [16] Janusz, G. J.: Algebraic Number Fields.Graduate Studies in Mathematics 7. AMS, Providence (1996). Zbl 0854.11001, MR 1362545, 10.1090/gsm/007
Reference: [17] Kumar, M., Khanduja, S. K.: A generalization of Dedekind criterion.Commun. Algebra 35 (2007), 1479-1486. Zbl 1145.11078, MR 2317622, 10.1080/00927870601168897
Reference: [18] Lavallee, M. J., Spearman, B. K., Williams, K. S.: Lifting monogenic cubic fields to monogenic sextic fields.Kodai Math. J. 34 (2011), 410-425. Zbl 1237.11045, MR 2855831, 10.2996/kmj/1320935550
Reference: [19] Mann, H. B.: On integral bases.Proc. Am. Math. Soc. 9 (1958), 167-172. Zbl 0081.26602, MR 0093502, 10.1090/S0002-9939-1958-0093502-7
Reference: [20] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers.Springer, Berlin (1990). Zbl 0717.11045, MR 1055830, 10.1007/978-3-662-07001-7
Reference: [21] Neukirch, J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). Zbl 0956.11021, MR 1697859, 10.1007/978-3-662-03983-0
Reference: [22] Sahmoudi, M.: Explicit integral basis for a family of sextic field.Gulf J. Math. 4 (2016), 217-222. Zbl 1366.11107, MR 3603475, 10.56947/gjom.v4i4.280
Reference: [23] Sahmoudi, M., Soullami, A.: On monogenicity of relative cubic-power extensions.Adv. Math., Sci. J. 9 (2020), 6817-6827. 10.37418/amsj.9.9.40
Reference: [24] Sahmoudi, M., Soullami, A.: On sextic integral bases using relative quadratic extention.Bol. Soc. Parana. Mat. (3) 38 (2020), 175-180. Zbl 1431.35011, MR 3912302, 10.5269/bspm.v38i4.40042
Reference: [25] Schmid, P.: On criteria by Dedekind and Ore for integral ring extensions.Arch. Math. 84 (2005), 304-310. Zbl 1072.13004, MR 2135040, 10.1007/s00013-004-1227-4
Reference: [26] Soullami, A., Sahmoudi, M., Boughaleb, O.: On relative power integral basis of a family of numbers fields.Rocky Mt. J. Math. 51 (2021), 1443-1452. Zbl 1469.11414, MR 4298858, 10.1216/rmj.2021.51.1443
Reference: [27] Spearman, B. K., Williams, K. S.: Relative integral bases for quartic fields over quadratic subfields.Acta Math. Hung. 70 (1996), 185-192. Zbl 30864.11051, MR 1374384, 10.1007/BF02188204
Reference: [28] Spearman, B. K., Williams, K. S.: A relative integral basis over $\mathbb{Q}(\sqrt{-3})$ for the normal closure of a pure cubic field.Int. J. Math. Math. Sci. 25 (2003), 1623-1626. Zbl 1064.11070, MR 1979698, 10.1155/s0161171203204336
Reference: [29] Washington, L. C.: Relative integral bases.Proc. Am. Math. Soc. 56 (1976), 93-94. Zbl 0331.12002, MR 0399041, 10.1090/S0002-9939-1976-0399041-9
.

Files

Files Size Format View
MathBohem_148-2023-1_9.pdf 260.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo