Previous |  Up |  Next

Article

Title: Almost log-optimal trading strategies for small transaction costs in model with stochastic coefficients (English)
Author: Dostál, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 6
Year: 2022
Pages: 903-959
Summary lang: English
.
Category: math
.
Summary: We consider a non-consuming agent investing in a stock and a money market interested in the portfolio market price far in the future. We derive a strategy which is almost log-optimal in the long run in the presence of small proportional transaction costs for the case when the rate of return and the volatility of the stock market price are bounded It o processes with bounded coefficients and when the volatility is bounded away from zero. (English)
Keyword: small transaction costs
Keyword: logarithmic utility function
Keyword: non-constant coefficients
MSC: 60G44
MSC: 60H30
MSC: 91G80
idZBL: Zbl 07655865
idMR: MR4548222
DOI: 10.14736/kyb-2022-6-0903
.
Date available: 2023-02-10T13:49:58Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151537
.
Reference: [1] Ahrens, L.: On Using Shadow Prices for the Asymptotic Analysis of Portfolio Optimization under Proportional Transaction Costs..PhD. Thesis, Kiel, 2015.
Reference: [2] Akian, M., Menaldi, J. L., Sulem, A.: On an investment-consumption model with transaction costs..J. Control Optim. 34 (1996), 1, 329-364. Zbl 1035.91505, MR 1372917,
Reference: [3] Akian, M., Sulem, A., Taksar, M. I.: Dynamic optimization of long-term growth rate for a portfolio with transaction costs and logarithmic utility..Math. Finance 11 (2001), 2, 53-188. MR 1822775,
Reference: [4] Algoet, P. H., Cover, T. M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment..Ann. Probab. 16 (1988), 2, 876-898. MR 0929084,
Reference: [5] Bell, R. M., Cover, T. M.: Competitive optimality of logarithmic investment..Math. Oper. Res. 5 (1980), 2, 161-166. Zbl 0442.90120, MR 0571810,
Reference: [6] Bell, R., Cover, T. M.: Game-theoretic optimal portfolios..Management Sci. 34 (1988), 6, 724-733. Zbl 0649.90014, MR 0943277,
Reference: [7] Bichuch, M., Sircar, R.: Optimal investment with transaction costs and stochastic volatility Part II: Finite horizon..SIAM J. Control Optim. 57 (2019), 1, 437-467. MR 3904415,
Reference: [8] Breiman, L.: Optimal gambling system for flavorable games..In: Proc. 4-th Berkeley Symposium on Mathematical Statistics and Probability 1 (1961), pp. 65-78. MR 0135630
Reference: [9] Browne, S., Whitt, W.: Portfolio choice and the Bayesian Kelly criterion..Adv. in Appl. Probab. 28 (1996), 4, 1145-1176. Zbl 0867.90010, MR 1418250,
Reference: [10] Cai, J., Rosenbaum, M., Tankov, P.: Asymptotic lower bounds for optimal tracking: A linear programming approach..Ann. Appl. Probab. 27 (2017), 4, 2455-2514. MR 3693531,
Reference: [11] Constantinides, G. M.: Capital market equilibrium with transaction costs..J. Political Economy 94 (1986), 4, 842-862.
Reference: [12] Davis, M. H. A., Norman, A. R.: Portfolio Selection with Transaction Costs..Math. Oper. Res. 15 (1990), 4, 676-713. MR 1080472,
Reference: [13] Dostál, P.: Optimal trading strategies with transaction costs paid only for the first stock..Acta Univ. Carolin. Math. Phys. 47 (2006), 2, 43-72. MR 2512173
Reference: [14] Dostál, P.: Almost optimal trading strategies for small transaction costs and a HARA utility function..J. Comb. Inf. Syst. Sci. 35 (2010), 1-2, 257-291.
Reference: [15] Dostál, P.: Futures trading with transaction costs..In: Proc. ALGORITMY 2009, (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak University of Technology in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428. Zbl 1184.91199
Reference: [16] Dostál, P.: Investment strategies in the long run with proportional transaction costs and HARA utility function..Quant. Finance 9 (2009), 2, 231-242. MR 2512992,
Reference: [17] Dostál, P., Klůjová, J.: Log-optimal investment in the long run with proportional transaction costs when using shadow prices..Kybernetika 51 (2015), 4, 588-628. MR 3423189,
Reference: [18] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance..Kluwer, Dordrecht 2002. MR 2008457
Reference: [19] Janeček, K.: Optimal Growth in Gambling and Investing..MSc Thesis, Charles University, Prague 1999.
Reference: [20] Janeček, K., Shreve, S. E.: Asymptotic analysis for optimal investment and consumption with transaction costs..Finance Stoch. 8 (2004), 2, 181-206. MR 2048827,
Reference: [21] Janeček, K., Shreve, S. E.: Futures Trading with Transaction Costs..Illinois J. Math. 54 (2010), 4, 1239-1284. MR 2981847,
Reference: [22] Kallenberg, O.: Foundations of Modern Probability..Springer-Verlag, New York - Berlin - Heidelberg 1997. Zbl 0996.60001, MR 1464694
Reference: [23] Kallsen, J., Muhle-Karbe, J.: The general structure of optimal investment and consumption with small transaction costs..Math. Finance 27 (2017), 3, 659-703. MR 3668154,
Reference: [24] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus..Springer-Verlag, New York - Berlin - Heidelberg 1991. MR 1121940
Reference: [25] Kelly, J. L.: A new interpretation of information rate..Bell System Techn. J. 35 (1956), 4, 917-926. MR 0090494,
Reference: [26] Magill, M. J. P., Constantinides, G. M.: Portfolio Selection with transaction costs..J. Econom. Theory 13 (1976), 2, 245-263. MR 0469196, 10.1016/0022-0531(76)90018-1
Reference: [27] Melnyk, Y., Seifried, F. T.: Small-cost asymptotics for long-term growth rates in incomplete markets..Math. Finance 28 (2018), 2, 668-711. MR 3780971,
Reference: [28] Merton, R. C.: Optimum consumption and portfolio rules in a con\-ti\-nu\-ous-time model..J. Econom. Theory 3 (1971), 4, 373-413 MR 0456373,
Reference: [29] Morton, A. J., Pliska, S.: Optimal portfolio management with fixed transaction costs..Math. Finance 5 (1995), 4, 337-356. Zbl 0866.90020,
Reference: [30] Mulvey, J. M., Sun, Y., Wang, M., Ye, J.: Optimizing a portfolio of mean-reverting assets with transaction costs via a feedforward neural network..Quant. Finance 20 (2020), 8, 1239-1261. MR 4138218,
Reference: [31] Rotando, L. M., Thorp, E. O.: The Kelly criterion and the stock market..Amer. Math. Monthly 99 (1992), 10, 922-931. Zbl 0768.90105, MR 1190557,
Reference: [32] Samuelson, P. A.: The fallacy of maximizing the geometric mean in long sequences of investing or gambling..Proc. Natl. Acad. Sci. USA 68 (1971), 10, 2493-2496. MR 0295739,
Reference: [33] Shreve, S., Soner, H. M.: Optimal investment and consumption with transaction costs..Ann. Appl. Probab. 4 (1994), 3, 609-692. Zbl 0813.60051, MR 1284980,
Reference: [34] Thorp, E. O.: Portfolio choice and the Kelly criterion..In: Stochastic Optimization Models in Finance, (W. T. Ziemba and R. G. Vickson, eds.), Academic Press, New York 1975, pp. 599-619.
Reference: [35] Thorp, E.: The Kelly criterion in blackjack, sports betting and the stock market..In: 10th International Conference on Gambling and Risk Taking, Montreal 1997.
Reference: [36] Dostál, P.: Supplement, 2022..Online:
.

Files

Files Size Format View
Kybernetika_58-2022-6_4.pdf 2.054Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo