Previous |  Up |  Next

Article

Title: A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type (English)
Author: Bae, Soohyun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 155-162
Summary lang: English
.
Category: math
.
Summary: We consider the quasilinear equation $\Delta _p u +K(|x|)u^q=0$, and present the proof of the local existence of positive radial solutions near $0$ under suitable conditions on $K$. Moreover, we provide a priori estimates of positive radial solutions near $\infty $ when $r^{-\ell }K(r)$ for $\ell \ge -p$ is bounded near $\infty $. (English)
Keyword: quasilinear equation
Keyword: positive solution
Keyword: a priori bound
MSC: 35B45
MSC: 35J92
idZBL: Zbl 07675585
idMR: MR4563027
DOI: 10.5817/AM2023-2-155
.
Date available: 2023-02-22T14:39:44Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151562
.
Reference: [1] Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems.J. Anal. Math. 84 (2001), 1–49. MR 1849197, 10.1007/BF02788105
Reference: [2] Kawano, N., Ni, W.-M., Yotsutani, S.: A generalized Pohozaev identity and its applications.J. Math. Soc. Japan 42 (1990), 541–564. 10.2969/jmsj/04230541
Reference: [3] Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to ${\rm div} (|D u|^{m-2}D u) + K(|x|)u^q=0$ in ${\bf R}^n$.J. Math. Soc. Japan 45 (1993), 719–742.
Reference: [4] Li, Y., Ni, W.-M.: On conformal scalar curvature equation in ${\bf R}^n$.Duke Math. J. 57 (1988), 895–924.
Reference: [5] Ni, W.-M., Serrin, J.: Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case.Atti Convegni Lincei 77 (1986), 231–257.
Reference: [6] Serrin, J., Zou, H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities.Acta Math. 189 (2002), 79–142. MR 1946918, 10.1007/BF02392645
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_2.pdf 447.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo